Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Microdevices ; 22(1): 8, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31845066

RESUMEN

Biomimetics is the interdisciplinary scientific field focused on the study and imitation of biological systems, with the aim of solving complex technological problems. In this paper, we present a new bio-inspired design for microneedles (MNs) and MN arrays, intended for rapidly coating the MNs with drug/vaccine. The biomimetic approach consists in ornamenting the lateral sides of pyramidal MNs with structures inspired by the external scent efferent systems of some European true bugs, which facilitate a directional liquid transport. To realize these MNs, two-photon polymerization (TPP) technique was used. Liquid coating capabilities of structured and non-structured MNs were compared. Moreover, both in-vivo and ex-vivo skin tests were performed to prove that MNs pierce the skin. We show that the arrays of MNs can be accurately replicated using a micro-moulding technique. We believe this design will be beneficial for the process of drug/vaccine loading onto the needles' surfaces, by making it more efficient and by reducing the drug/vaccine wastage during MN coating process.


Asunto(s)
Biomimética/instrumentación , Diseño de Equipo , Agujas , Preparaciones Farmacéuticas/química , Vacunas/química
2.
J R Soc Interface ; 15(140)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29593087

RESUMEN

In this work, we present structured capillaries that were inspired by the microstructures of the external scent efferent system as found in different European true bug species (Pentatomidae and Cydnidae). These make use of small, orientated structures in order to facilitate fluid movement towards desired areas where defensive substances are evaporated. Gland channels and microstructures were investigated by means of scanning electron microscopy and abstracted into three-dimensional models. We used these models to create scent channel replicas from different technical substrates (steel and polymers) by means of laser ablation, laser structuring and casting. Video analysis of conducted fluid-flow experiments showed that bug-inspired, artificial scent fluid channels can indeed transport different fluids (water solutions and oils/lubricants) passively in one direction (velocities of up to 1 mm s-1), while halting the fluid movement in the opposite direction. At the end of this contribution, we present a physical theory that explains the observed fluid transport and sets the rules for performance optimization in future work.


Asunto(s)
Materiales Biomiméticos/química , Heterópteros/fisiología , Modelos Biológicos , Odorantes , Animales , Transporte Biológico/fisiología , Heterópteros/ultraestructura
3.
Biomimetics (Basel) ; 3(4)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31105253

RESUMEN

Biomimetic work often concerns to biological surfaces and their interaction with the environment. Liquid handling, barrier function and protection against heat, pathogens and predators, to name just a few, require biological surfaces to exhibit specific material properties-properties that often are not suited for specific measurements under lab conditions. In particular, the lack of the necessary sample toughness or conductivity can prove difficult to perform certain experiments. Hence, we present a novel approach to achieve all-metal replicas from biological surfaces (AMROBS). Resulting replicas exhibit microscale accurate replication of morphological topography while providing tough, conductive subjects for investigation and easy chemical surface modification. Combining established techniques like polymer casting (e.g., silicone), chemical silver precipitation and electroplating, all-metal replicas of several technical and biological surfaces (e.g., diffraction foils, lizard skin, flat bug surface) were produced and compared to their original counterparts with regard to morphology and functionality. By using scanning electron microscopy and video analysis, we show that a high degree of replication accuracy is achievable, and conclude the future possibilities of AMROBS in a comprehensive discussion, including the general "do's" and "do nots" of metal replication following this approach.

4.
Biol Open ; 6(8): 1209-1218, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811303

RESUMEN

The neotropical flat bug species Dysodius lunatus and Dysodius magnus show a fascinating camouflage principle, as their appearance renders the animal hardly visible on the bark of trees. However, when getting wet due to rain, bark changes its colour and gets darker. In order to keep the camouflage effect, it seems that some Dysodius species benefit from their ability to hold a water film on their cuticle and therefore change their optical properties when also wetted by water. This camouflage behaviour requires the insect to have a hydrophilic surface and passive surface structures which facilitate the liquid spreading. Here we show morphological and chemical characterisations of the surface, especially the cuticular waxes of D. magnus Scanning electron microscopy revealed that the animal is covered with pillar-like microstructures which, in combination with a surprising chemical hydrophilicity of the cuticle waxes, render the bug almost superhydrophilic: water spreads immediately across the surface. We could theoretically model this behaviour assuming the effect of hemi-wicking (a state in which a droplet sits on a rough surface, partwise imbibing the structure around).  Additionally the principle was abstracted and a laser-patterned polymer surface, mimicking the structure and contact angle of Dysodius wax, shows exactly the behaviour of the natural role model - immediate spreading of water and the formation of a thin continuous water film changing optical properties of the surface.

5.
Cell Host Microbe ; 20(5): 618-630, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27832590

RESUMEN

Surface-associated TRAP (thrombospondin-related anonymous protein) family proteins are conserved across the phylum of apicomplexan parasites. TRAP proteins are thought to play an integral role in parasite motility and cell invasion by linking the extracellular environment with the parasite submembrane actomyosin motor. Blood stage forms of the malaria parasite Plasmodium express a TRAP family protein called merozoite-TRAP (MTRAP) that has been implicated in erythrocyte invasion. Using MTRAP-deficient mutants of the rodent-infecting P. berghei and human-infecting P. falciparum parasites, we show that MTRAP is dispensable for erythrocyte invasion. Instead, MTRAP is essential for gamete egress from erythrocytes, where it is necessary for the disruption of the gamete-containing parasitophorous vacuole membrane, and thus for parasite transmission to mosquitoes. This indicates that motor-binding TRAP family members function not just in parasite motility and cell invasion but also in membrane disruption and cell egress.


Asunto(s)
Eritrocitos/parasitología , Exocitosis , Merozoítos/fisiología , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/parasitología , Animales , Culicidae , Humanos , Membranas/metabolismo , Ratones
6.
Ecotoxicology ; 22(8): 1264-77, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23975539

RESUMEN

Silver nanoparticles (AgNPs) are widely believed to be retained in the sewage sludge during sewage treatment. The AgNPs and their derivatives, however, re-enter the environment with the sludge and via the effluent. AgNP were shown to occur in surface water, while evidence of a potential toxicity of AgNPs in aquatic organisms is growing. This study aims to examine the toxicity of AgNPs to the embryos of the aquatic vertebrate model zebrafish (Danio rerio) before and after sewage treatment plants (STPs) processes. Embryos were treated with AgNP (particle size: >90 % <20 nm) and AgNO3 in ISO water for 48 h and consequently displayed effects such as delayed development, tail malformations and edema. For AgNP, the embryos were smaller than the controls with conspicuously smaller yolk sacs. The corresponding EC50 values of 48 hours post fertilization (hpf) were determined as 73 µg/l for AgNO3 and 1.1 mg/l for AgNP. Whole-mount immunostainings of primary and secondary motor neurons also revealed secondary neurotoxic effects. A TEM analysis confirmed uptake of the AgNPs, and the distribution within the embryo suggested absorption across the skin. Embryos were also exposed (for 48 h) to effluents of AgNP-spiked model STP with AgNP influent concentrations of 4 and 16 mg/l. These embryos exhibited the same malformations than for AgNO3 and AgNPs, but the embryo toxicity of the sewage treatment effluent was higher (EC50 = 142 µg/l; 48 hpf). On the other hand, control STP effluent spiked with AgNPs afterwards was less toxic (EC50 = 2.9 mg/l; 48 hpf) than AgNPs in ISO water. This observation of an increased fish embryo toxicity of STP effluents with increasing AgNP influent concentrations identifies the accumulation of AgNP in the STP as a potential source of effluent toxicity.


Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Monitoreo del Ambiente , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Aguas del Alcantarillado/química , Plata/química
7.
Beilstein J Nanotechnol ; 2: 204-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21977432

RESUMEN

Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA