Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 1770-1785, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222503

RESUMEN

In 2019, 4.95 million deaths were directly attributed to antimicrobial-resistant bacterial infections globally. In addition, the mortality associated with fungal infections is estimated at 1.7 million annually, with many of these deaths attributed to species that are no longer susceptible to traditional therapeutic regimes. Herein, we demonstrate the use of a novel class of supramolecular self-associating amphiphilic (SSA) salts as antimicrobial agents against the critical pathogens Pseudomonas aeruginosa and Candida albicans. We also identify preliminary structure-activity relationships for this class of compound that will aid the development of next-generation SSAs demonstrating enhanced antibiofilm activity. To gain insight into the possible mode of action for these agents, a series of microscopy studies were performed, taking advantage of the intrinsic fluorescent nature of benzothiazole-substituted SSAs. Analysis of these data showed that the SSAs interact with the cell surface and that a benzothiazole-containing SSA inhibits hyphal formation by C. albicans.

2.
Chem Mater ; 36(1): 407-416, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222938

RESUMEN

Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.

3.
Chem Soc Rev ; 52(20): 6892-6917, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37753825

RESUMEN

This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.

4.
Chem Commun (Camb) ; 59(70): 10504-10507, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644759

RESUMEN

We determine the efficacy for three known structurally related, membrane active detergents against multidrug resistant and wild type strains of Pseudomonas aeruginosa. Accessible solution state NMR experiments are used to quantify phospholipid headgroup composition of the microbial membranes and to gain molecular level insight into antimicrobial mode of action.


Asunto(s)
Detergentes , Pseudomonas aeruginosa , Detergentes/farmacología , Betaína , Fosfolípidos
5.
Nat Nanotechnol ; 18(9): 1060-1066, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400719

RESUMEN

Extreme energy-dissipating materials are essential for a range of applications. The military and police force require ballistic armour to ensure the safety of their personnel, while the aerospace industry requires materials that enable the capture, preservation and study of hypervelocity projectiles. However, current industry standards display at least one inherent limitation, such as weight, breathability, stiffness, durability and failure to preserve captured projectiles. To resolve these limitations, we have turned to nature, using proteins that have evolved over millennia to enable effective energy dissipation. Specifically, a recombinant form of the mechanosensitive protein talin was incorporated into a monomeric unit and crosslinked, resulting in a talin shock-absorbing material (TSAM). When subjected to 1.5 km s-1 supersonic shots, TSAMs were shown to absorb the impact and capture and preserve the projectile.


Asunto(s)
Sonido , Talina
6.
J Mater Chem B ; 11(17): 3958-3968, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070387

RESUMEN

Antimicrobial resistance is one of the greatest threats to human health. Gram-positive methicillin resistant Staphylococcus aureus (MRSA), in both its planktonic and biofilm form, is of particular concern. Herein we identify the hydrogelation properties for a series of intrinsically fluorescent, structurally related supramolecular self-associating amphiphiles and determine their efficacy against both planktonic and biofilm forms of MRSA. To further explore the potential translation of this hydrogel technology for real-world applications, the toxicity of the amphiphiles was determined against the eukaryotic multicellular model organism, Caenorhabditis elegans. Due to the intrinsic fluorescent nature of these supramolecular amphiphiles, material characterisation of their molecular self-associating properties included; comparative optical density plate reader assays, rheometry and widefield fluorescence microscopy. This enabled determination of amphiphile structure and hydrogel sol dependence on resultant fibre formation.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Animales , Humanos , Pruebas de Sensibilidad Microbiana , Biopelículas , Caenorhabditis elegans , Plancton , Benzotiazoles
7.
Cell Rep Methods ; 3(2): 100396, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936078

RESUMEN

We describe an innovative system that exports diverse recombinant proteins in membrane-bound vesicles from E. coli. These recombinant vesicles compartmentalize proteins within a micro-environment that enables production of otherwise challenging insoluble, toxic, or disulfide-bond containing proteins from bacteria. The release of vesicle-packaged proteins supports isolation from the culture and allows long-term storage of active protein. This technology results in high yields of vesicle-packaged, functional proteins for efficient downstream processing for a wide range of applications from discovery science to applied biotechnology and medicine.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas Recombinantes/genética , Biotecnología/métodos , Proteínas de Escherichia coli/genética
8.
RSC Adv ; 12(43): 27877-27880, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320246

RESUMEN

Synthetic ionophores are promising therapeutic targets, yet poor water solubility limits their potential for translation into the clinic. Here we report a water-soluble, supramolecular self-associating amphiphile that functions as a cation uniporter in synthetic vesicle systems, deriving mechanistic insight through planar bilayer patch clamp experiments.

9.
Chem Soc Rev ; 51(20): 8696-8755, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36190355

RESUMEN

Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Bacterias , Humanos
10.
Org Biomol Chem ; 20(38): 7587-7592, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107007

RESUMEN

We present a series of supramolecular self-associated amphiphiles, which spontaneously self-assemble into aggregated species. These aggregates are shown to absorb a variety of (polar) micropollutants from aqueous mixtures and as a result we determine the suitability for this technology to be developed further as aqueous environmental clean-up agents.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Agua
11.
Chem Sci ; 13(33): 9761-9773, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091903

RESUMEN

The rise of antimicrobial resistance remains one of the greatest global health threats facing humanity. Furthermore, the development of novel antibiotics has all but ground to a halt due to a collision of intersectional pressures. Herein we determine the antimicrobial efficacy for 14 structurally related supramolecular self-associating amphiphiles against clinically relevant Gram-positive methicillin resistant Staphylococcus aureus and Gram-negative Escherichia coli. We establish the ability of these agents to selectively target phospholipid membranes of differing compositions, through a combination of computational host:guest complex formation simulations, synthetic vesicle lysis, adhesion and membrane fluidity experiments, alongside our novel 1H NMR CPMG nanodisc coordination assays, to verify a potential mode of action for this class of compounds and enable the production of evermore effective next-generation antimicrobial agents. Finally, we select a 7-compound subset, showing two lead compounds to exhibit 'druggable' profiles through completion of a variety of in vivo and in vitro DMPK studies.

13.
Chem ; 8(2): 299-311, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35128144

RESUMEN

The international Women in Supramolecular Chemistry network believes that taking an area-specific approach effectively supports equality, diversity, and inclusion. Science lacks diversity, and this is intersectional. We share effects of coronavirus disease 2019 (COVID-19) by triangulating findings from an online survey, a collaborative autoethnography, and reflective group research meetings. We show how qualitative research with the community offers insights into challenges and supports individuals, and we demonstrate that research leaders have often taken responsibility for their teams' mental health and well-being at the cost of their own.

14.
Org Biomol Chem ; 20(30): 5999-6006, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35147630

RESUMEN

Supramolecular self-associating amphiphiles are a class of amphiphilic salt, the anionic component of which is 'frustrated' in nature, meaning multiple hydrogen bonding modes can be accessed simultaneously. Here we derive critical micelle concentration values for four supramolecular self-associating amphiphiles using the standard pendant drop approach and present a new high-throughput, optical density measurement based methodology, to enable the estimation of critical micelle concentrations over multiple temperatures. In addition, we characterise the low-level hydrogen bonded self-association events in the solid state, through single crystal X-ray diffraction, and in polar organic DMSO-d6 solutions using a combination of 1H NMR techniques. Moving into aqueous ethanol solutions (EtOH/H2O or EtOH/D2O (1 : 19 v/v)), we also show these amphiphilic compounds to form higher-order self-associated species through a combination of 1H NMR, dynamic light scattering and zeta potential studies.


Asunto(s)
Micelas , Agua , Cristalografía por Rayos X , Hidrógeno , Enlace de Hidrógeno , Agua/química
16.
Chem Sci ; 12(40): 13273-13282, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34777745

RESUMEN

While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.

17.
Chem Commun (Camb) ; 57(89): 11839-11842, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34698738

RESUMEN

Herein, we report a series of di-anionic supramolecular self-associating amphiphiles (SSAs). We elucidate the antimicrobial properties of these SSAs against both methicillin resistant Staphylococcus aureus and Escherichia coli. In addition, we show this class of compound to form both intra- and intermolecular hydrogen bonded macrocyclic structures in the solid state.


Asunto(s)
Alcanosulfonatos/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Tensoactivos/farmacología , Alcanosulfonatos/química , Antibacterianos/química , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Compuestos de Fenilurea/química , Espectroscopía de Protones por Resonancia Magnética , Tensoactivos/química
18.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34462352

RESUMEN

Amyloid seeds are nanometer-sized protein particles that accelerate amyloid assembly as well as propagate and transmit the amyloid protein conformation associated with a wide range of protein misfolding diseases. However, seeded amyloid growth through templated elongation at fibril ends cannot explain the full range of molecular behaviors observed during cross-seeded formation of amyloid by heterologous seeds. Here, we demonstrate that amyloid seeds can accelerate amyloid formation via a surface catalysis mechanism without propagating the specific amyloid conformation associated with the seeds. This type of seeding mechanism is demonstrated through quantitative characterization of the cross-seeded assembly reactions involving two nonhomologous and unrelated proteins: the human Aß42 peptide and the yeast prion-forming protein Sup35NM. Our results demonstrate experimental approaches to differentiate seeding by templated elongation from nontemplated amyloid seeding and rationalize the molecular mechanism of the cross-seeding phenomenon as a manifestation of the aberrant surface activities presented by amyloid seeds as nanoparticles.


Asunto(s)
Amiloide/metabolismo , Nanopartículas , Proteínas Amiloidogénicas/metabolismo , Catálisis , Humanos , Proteínas Priónicas/metabolismo , Propiedades de Superficie
19.
Angew Chem Int Ed Engl ; 60(21): 11572-11579, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33682318

RESUMEN

Diversity, equality, and inclusion (DEI/EDI) are pressing issues in chemistry and the natural sciences. In this Essay we share how an area-specific approach is "calling in" the community so that it can act to address EDI issues, and support those who are marginalised. Women In Supramolecular Chemistry (WISC) is an international network that aims to support equality, diversity, and inclusion within supramolecular chemistry. WISC has taken a field-specific approach using qualitative research methods with scientists to identify the support that is needed and the problems the supramolecular community needs to address. Herein, we present survey data from the community which highlight the barriers that are faced by those who take career breaks for any reason, a common example is maternity leave, and the importance of mentoring to aid progression post-PhD. In conclusion, we set out an interdisciplinary and creative approach to addressing EDI issues within supramolecular chemistry.

20.
Org Biomol Chem ; 19(9): 2008-2014, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33586753

RESUMEN

Organophosphorus (OP) chemical warfare agents (CWAs) represent an ongoing threat but the understandable widespread prohibition of their use places limitations on the development of technologies to counter the effects of any OP CWA release. Herein, we describe new, accessible methods for the identification of appropriate molecular simulants to mimic the hydrogen bond accepting capacity of the P[double bond, length as m-dash]O moiety, common to every member of this class of CWAs. Using the predictive methodologies developed herein, we have identified OP CWA hydrogen bond acceptor simulants for soman and sarin. It is hoped that the effective use of these physical property specific simulants will aid future countermeasure developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...