RESUMEN
This study aims to clarify the process of oral drug absorption from jelly formulations. Agar and pectin-based jellies containing drugs with different membrane permeability (high: antipyrine [ANT], medium: metoprolol [MET], low: atenolol [ATE]) were prepared and tested for in vitro drug release and in vivo drug absorption in rats. All drugs showed similar release profiles in vitro from both jelly formulations, except for the faster release from pectin jelly at neutral pH. In contrast, in vivo absorption of ATE but not of ANT from jelly formulations was significantly lower than from solution. Absorption of ATE and MET was low from agar jelly after oral administration, whereas additional water intake significantly increased the absorption. The process of drug absorption was described by the compartmental model consisting of jelly, intestinal fluid, and blood compartments. Drugs in the jelly diffuse into the intestinal fluid and then permeate the intestinal membrane. By considering the rate-limiting process, membrane permeability-dependent drug absorption from agar jelly and the effects of water intake were identified. In conclusion, jelly formulations may potentially decrease and delay drug oral absorption, especially of poorly permeable drugs. Intestinal fluid volume is one of the important factors to control the drug absorption.
RESUMEN
Jellies for oral administration are dosage forms that contain water, as stipulated in the Japanese Pharmacopeia, and heat is generally applied to the jellies during the manufacturing process. Therefore, it is difficult to formulate drugs that may be affected adversely by water and/or heat. To solve this problem, we tried to develop a powder form of gel as a novel dosage form (dry jelly: jelly medicine extemporaneously prepared) that is converted to jelly after addition of water at the time of administration. For this purpose, a basic gel formulation consisting of pectin, glucono-δ-lactone, dibasic calcium phosphate hydrate, and sucrose was investigated to evaluate the critical factors affecting gelation phenomena. The gel form was developed by adjusting the amount of each component of the formulation and of water added. Gelation occurred even with hard water containing metal ions (hardness of approximately 304 mg/L), and no changes in gel hardness occurred. The desired gel hardness could be controlled by adjusting the amount of water. The gel hardness changed over time after the addition of water, but this change did not affect the dissolution behavior of drugs formulated in the dry jelly.
Asunto(s)
Pectinas/síntesis química , Química Farmacéutica , Composición de Medicamentos , Geles/síntesis química , Geles/química , Tamaño de la Partícula , Pectinas/química , Polvos/síntesis química , Polvos/química , Solubilidad , Propiedades de Superficie , Agua/químicaRESUMEN
Oral gel formulations are known as easy to administer drug products for patients who have problems taking drugs including those with conditions such as dysphagia. In addition, there are numerous commercially available oral gel products, most of which are immediate-release formulation that release their pharmaceutical ingredient content by diffusion. This study is focused on developing oral gel formulations that reduce the dosing frequency and dosage compared to the conventional types. This is with the aim of facilitating the use of gel formulations for producing pharmaceutical agents with different dose regimens, thereby enhancing patient convenience. Here, we used naturally derived high-molecular-weight agar (Ag), xanthan gum (Xa), and locust bean gum (Lo) as gel bases to prepare a variety of gel membranes, and evaluated the diffusion coefficient of the model substances. The result revealed that the Ag content in the Xa-Lo combination gel concentration-dependently increased the diffusion coefficient. Moreover, these findings were applied in an attempt to mask the taste of intensely bitter levofloxacin. The results indicated that the Xa-Lo combination gel exhibited a significantly superior masking effect to that of the Ag gel. This study demonstrates the feasibility of using oral gel formulations to modulate the controlled-release functionality of pharmaceutical agents.
Asunto(s)
Agar/química , Difusión , Liberación de Fármacos , Galactanos/química , Geles/química , Mananos/química , Preparaciones Farmacéuticas/química , Gomas de Plantas/química , Polisacáridos Bacterianos/química , Administración Oral , Química Farmacéutica , Galactanos/administración & dosificación , Geles/administración & dosificación , Mananos/administración & dosificación , Preparaciones Farmacéuticas/administración & dosificación , Gomas de Plantas/administración & dosificación , Polisacáridos Bacterianos/administración & dosificación , SolubilidadRESUMEN
The gene dad encoding 2,4'-dihydroxyacetophenone (DHAP) dioxygenase was cloned from Burkholderia sp. AZ11. The initiation codon GTG was converted to ATG for high-level expression of the enzyme in Escherichia coli. The enzyme was moderately thermostable, and the recombinant enzyme was briefly purified. The enzyme (M(r)=90 kDa) was a homotetramer with a subunit M(r) of 23 kDa. It contained 1.69 mol of non-heme iron, and had a dark gray color. On anaerobic incubation of it with DHAP, the absorption at around 400 nm increased due to the formation of an enzyme-DHAP complex. Multiple sequence alignment suggested that His77, His79, His115, and Glu96 in the cupin fold were possible metal ligands. The apparent K(m) for DHAP and the apparent V(max) were estimated to be 1.60 µM and 6.28 µmol/min/mg respectively. 2-Hydroxyacetophenone was a poor substrate. CuCl(2) and HgCl(2) strongly inhibited the enzyme, while FeSO(4) weakly activated it.