Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 11(12): 4835-4846, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34888193

RESUMEN

BACKGROUND: Artificial intelligence (AI) based radiotherapy treatment planning tools have gained interest in automating the treatment planning process. It is essential to understand their overall robustness in various clinical scenarios. This is an existing gap between many AI based tools and their actual clinical deployment. This study works to fill the gap for AI based treatment planning by investigating a clinical robustness assessment (CRA) tool for the AI based planning methods using a phantom simulation approach. METHODS: A cylindrical phantom was created in the treatment planning system (TPS) with the axial dimension of 30 cm by 18 cm. Key structures involved in pancreas stereotactic body radiation therapy (SBRT) including PTV25, PTV33, C-Loop, stomach, bowel and liver were created within the phantom. Several simulation scenarios were created to mimic multiple scenarios of anatomical changes, including displacement, expansion, rotation and combination of three. The goal of treatment planning was to deliver 25 Gy to PTV25 and 33 Gy to PTV33 in 5 fractions in simultaneous integral boost (SIB) manner while limiting luminal organ-at-risk (OAR) max dose to be under 29 Gy. A previously developed deep learning based AI treatment planning tool for pancreas SBRT was identified as the validation object. For each scenario, the anatomy information was fed into the AI tool and the final fluence map associated to the plan was generated, which was subsequently sent to TPS for leaf sequencing and dose calculation. The final auto plan's quality was analyzed against the treatment planning constraint. The final plans' quality was further analyzed to evaluate potential correlation with anatomical changes using the Manhattan plot. RESULTS: A total of 32 scenarios were simulated in this study. For all scenarios, the mean PTV25 V25Gy of the AI based auto plans was 96.7% while mean PTV33 V33Gy was 82.2%. Large variation (16.3%) in PTV33 V33Gy was observed due to anatomical variations, a.k.a. proximity of luminal structure to PTV33. Mean max dose was 28.55, 27.68 and 24.63 Gy for C-Loop, bowel and stomach, respectively. Using D0.03cc as max dose surrogate, the value was 28.03, 27.12 and 23.84 Gy for C-Loop, bowel and stomach, respectively. Max dose constraint of 29 Gy was achieved for 81.3% cases for C-Loop and stomach, and 78.1% for bowel. Using D0.03cc as max dose surrogate, the passing rate was 90.6% for C-Loop, and 81.3% for bowel and stomach. Manhattan plot revealed high correlation between the OAR over dose and the minimal distance between the PTV33 and OAR. CONCLUSIONS: The results showed promising robustness of the pancreas SBRT AI tool, providing important evidence of its readiness for clinical implementation. The established workflow could guide the process of assuring clinical readiness of future AI based treatment planning tools.

2.
Adv Radiat Oncol ; 6(4): 100672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33997484

RESUMEN

PURPOSE: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a challenging task, especially with simultaneous integrated boost treatment approaches. We propose a deep learning (DL) framework to accurately predict fluence maps from patient anatomy and directly generate intensity modulated radiation therapy plans. METHODS AND MATERIALS: The framework employs 2 convolutional neural networks (CNNs) to sequentially generate beam dose prediction and fluence map prediction, creating a deliverable 9-beam intensity modulated radiation therapy plan. Within the beam dose prediction CNN, axial slices of combined structure contour masks are used to predict 3-dimensional (3D) beam doses for each beam. Each 3D beam dose is projected along its beam's-eye-view to form a 2D beam dose map, which is subsequently used by the fluence map prediction CNN to predict its fluence map. Finally, the 9 predicted fluence maps are imported into the treatment planning system to finalize the plan by leaf sequencing and dose calculation. One hundred patients receiving pancreas SBRT were retrospectively collected for this study. Benchmark plans with unified simultaneous integrated boost prescription (25/33 Gy) were manually optimized for each case. The data set was split into 80/20 cases for training and testing. We evaluated the proposed DL framework by assessing both the fluence maps and the final predicted plans. Further, clinical acceptability of the plans was evaluated by a physician specializing in gastrointestinal cancer. RESULTS: The DL-based planning was, on average, completed in under 2 minutes. In testing, the predicted plans achieved similar dose distribution compared with the benchmark plans (-1.5% deviation for planning target volume 33 V33Gy), with slightly higher planning target volume maximum (+1.03 Gy) and organ at risk maximum (+0.95 Gy) doses. After renormalization, the physician rated 19 cases clinically acceptable and 1 case requiring minor improvement. CONCLUSIONS: The DL framework can effectively plan pancreas SBRT cases within 2 minutes. The predicted plans are clinically deliverable, with plan quality approaching that of manual planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...