Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36454643

RESUMEN

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Transcriptoma , Células Epiteliales Alveolares/metabolismo , Pulmón/patología , Alveolos Pulmonares/patología
2.
J Vis Exp ; (182)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499347

RESUMEN

In the lung, the alveolar epithelium is a physical barrier from environmental stimuli and plays an essential role in homeostasis and disease. Type 2 alveolar epithelial cells (AT2s) are the facultative progenitors of the distal lung epithelium. Dysfunction and injury of AT2s can result from and contribute to various lung diseases. Improved understanding of AT2 biology is, thus, critical for understanding lung biology and disease; however, primary human AT2s are generally difficult to isolate and limited in supply. To overcome these limitations, human induced pluripotent stem cell (iPSC)-derived type 2 alveolar epithelial cells (iAT2s) can be generated through a directed differentiation protocol that recapitulates in vivo lung development. iAT2s grow in feeder-free conditions, share a transcriptomic program with human adult primary AT2s, and execute key functions of AT2s such as production, packaging, and secretion of surfactant. This protocol details the methods for maintaining self-renewing iAT2s through serial passaging in three-dimensional (3D) culture or adapting iAT2s to air-liquid interface (ALI) culture. A single-cell suspension of iAT2s is generated before plating in 3D solubilized basement membrane matrix (hereafter referred to as "matrix"), where they self-assemble into monolayered epithelial spheres. iAT2s in 3D culture can be serially dissociated into single-cell suspensions to be passaged or plated in 2D ALI culture. In ALI culture, iAT2s form a polarized monolayer with the apical surface exposed to air, making this platform readily amenable to environmental exposures. Hence, this protocol generates an inexhaustible supply of iAT2s, producing upwards of 1 x 1030 cells per input cell over 15 passages while maintaining the AT2 program indicated by SFTPCtdTomato expression. The resulting cells represent a reproducible and relevant platform that can be applied to study genetic mutations, model environmental exposures, or screen drugs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Surfactantes Pulmonares , Adulto , Células Epiteliales Alveolares , Diferenciación Celular , Epitelio , Humanos
3.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315362

RESUMEN

Type 2 alveolar epithelial cells (AT2s), facultative progenitor cells of the lung alveolus, play a vital role in the biology of the distal lung. In vitro model systems that incorporate human cells, recapitulate the biology of primary AT2s, and interface with the outside environment could serve as useful tools to elucidate functional characteristics of AT2s in homeostasis and disease. We and others recently adapted human induced pluripotent stem cell-derived AT2s (iAT2s) for air-liquid interface (ALI) culture. Here, we comprehensively characterize the effects of ALI culture on iAT2s and benchmark their transcriptional profile relative to both freshly sorted and cultured primary human fetal and adult AT2s. We find that iAT2s cultured at ALI maintain an AT2 phenotype while upregulating expression of transcripts associated with AT2 maturation. We then leverage this platform to assay the effects of exposure to clinically significant, inhaled toxicants including cigarette smoke and electronic cigarette vapor.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Exposición a Riesgos Ambientales , Epitelio , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
4.
Cell Rep ; 36(9): 109636, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469722

RESUMEN

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Pulmonares Intersticiales/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Células Epiteliales Alveolares/patología , Animales , Línea Celular , Proliferación Celular , Metabolismo Energético , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/patología , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Ratones Noqueados , Mutación , FN-kappa B/metabolismo , Fenotipo , Proteostasis , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA