Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149388

RESUMEN

High-dimensional data have become ubiquitous in the biological sciences, and it is often desirable to compare two datasets collected under different experimental conditions to extract low-dimensional patterns enriched in one condition. However, traditional dimensionality reduction techniques cannot accomplish this because they operate on only one dataset. Contrastive principal component analysis (cPCA) has been proposed to address this problem, but it has seen little adoption because it requires tuning a hyperparameter resulting in multiple solutions, with no way of knowing which is correct. Moreover, cPCA uses foreground and background conditions that are treated differently, making it ill-suited to compare two experimental conditions symmetrically. Here we describe the development of generalized contrastive PCA (gcPCA), a flexible hyperparameter-free approach that solves these problems. We first provide analyses explaining why cPCA requires a hyperparameter and how gcPCA avoids this requirement. We then describe an open-source gcPCA toolbox containing Python and MATLAB implementations of several variants of gcPCA tailored for different scenarios. Finally, we demonstrate the utility of gcPCA in analyzing diverse high-dimensional biological data, revealing unsupervised detection of hippocampal replay in neurophysiological recordings and heterogeneity of type II diabetes in single-cell RNA sequencing data. As a fast, robust, and easy-to-use comparison method, gcPCA provides a valuable resource facilitating the analysis of diverse high-dimensional datasets to gain new insights into complex biological phenomena.

2.
Nat Rev Neurosci ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030273

RESUMEN

Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.

3.
Nat Cardiovasc Res ; 3(6): 754-769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898929

RESUMEN

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Here we show that CVDs share most of their genetic risk factors with MDD. Multivariate genome-wide association analysis of shared genetic liability between MDD and atherosclerotic CVD revealed seven loci and distinct patterns of tissue and brain cell-type enrichments, suggesting the involvement of the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic and psychosocial or lifestyle risk factors. Our data indicated causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and showed that the causal effects were partly explained by metabolic and psychosocial or lifestyle factors. The distinct signature of MDD-atherosclerotic CVD comorbidity suggests an immunometabolic subtype of MDD that is more strongly associated with CVD than overall MDD. In summary, we identified biological mechanisms underlying MDD-CVD comorbidity and modifiable risk factors for prevention of CVD in individuals with MDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...