Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406781, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099435

RESUMEN

Anisotropic optical 2D materials are crucial for achieving multiple-quanta functions within quantum materials, which enables the fabrication of axially polarized electronic and optoelectronic devices. In this work, multiple excitonic emissions owning polarization-sensitive orientations are clearly detected in a multilayered quasi-1D ZrS3 nanoribbon with respect to the nanostripe edge. Four excitons denoted as AS1, AS2, AS, and A2 with E ⊥ b polarized direction and one prominent A1 exciton with E || b polarized emission are simultaneously detected in the polarized micro-photoluminescence (µPL) measurement of 1.9-2.2 eV at 10 K. In contrast to light emission, polarized micro-thermoreflectance (µTR) measurements are performed to identify the polarization dependence and verify the excitons in the multilayered ZrS3 nanoribbon from the perspective of light absorption. At 10 K, a prominent and broadened peak on the lower-energy side, containing an indirect resonant emission (DI) observed by µPL and an indirect defect-bound exciton peak (AInd) observed by both µPL and µTR, is simultaneously detected, confirming the existence of a quasi-direct band edge in ZrS3. A van der Waals stacked p-GaSe/n-ZrS3 heterojunction solar cell is fabricated, which demonstrates a maximum axially-polarized conversion efficiency up to 0.412% as the E || b polarized light incident onto the device.

2.
J Phys Chem B ; 128(28): 6885-6891, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38970462

RESUMEN

We investigate the entropy of liquid water at ambient conditions using the two-phase thermodynamic (2PT) model, applied to both common pairwise-additive water models and the MB-pol and MB-pol(2023) data-driven many-body potentials. Our simulations demonstrate that the 2PT model yields entropy values in semiquantitative agreement with experimental data when using MB-pol and MB-pol(2023). Additionally, our analyses indicate that the entropy values predicted by pairwise-additive water models may benefit from error compensation between the inherent approximations of the 2PT model and the known limitations of these water models in describing many-body interactions. Despite its approximate nature, the simplicity of the 2PT model makes it a valuable tool for estimating relative entropy changes of liquid water across various environments, especially when combined with water models that provide a consistently robust representation of the structural, thermodynamic, and dynamical properties of liquid water.

3.
J Am Chem Soc ; 146(33): 23278-23288, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39049154

RESUMEN

Manipulating electronic polarizations such as ferroelectric or spin polarizations has recently emerged as an effective strategy for enhancing the efficiency of photocatalytic reactions. This study demonstrates the control of electronic polarizations modulated by ferroelectric and magnetic approaches within a two-dimensional (2D) layered crystal of copper indium thiophosphate (CuInP2S6) to boost the photocatalytic reduction of CO2. We investigate the substantial influence of ferroelectric polarization on the photocatalytic CO2 reduction efficiency, utilizing the ferroelectric-paraelectric phase transition and polarization alignment through electrical poling. Additionally, we explore enhancing the CO2 reduction efficiency by harnessing spin electrons through the synergistic introduction of sulfur vacancies and applying a magnetic field. Several advanced characterization techniques, including piezoresponse force microscopy, ultrafast pump-probe spectroscopy, in situ X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transformed spectroscopy, are performed to unveil the underlying mechanism of the enhanced photocatalytic CO2 reduction. These findings pave the way for manipulating electronic polarizations regulated through ferroelectric or magnetic modulations in 2D layered materials to advance the efficiency of photocatalytic CO2 reduction.

4.
Nanotechnology ; 35(40)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38604153

RESUMEN

Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.

5.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38471109

RESUMEN

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

6.
JACS Au ; 4(1): 58-71, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274254

RESUMEN

This work investigates the characteristic of layered In6Se7 with varying phosphorus (P) dopant concentrations (In6Se7:P) from P = 0, 0.5, 1, to P = 5%. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the structure and morphology of the In6Se7:P series compounds remain unchanged, exhibiting a monoclinic structure. Room-temperature micro-Raman (µRaman) result of all the compositions of layered In6Se7:P reveals two dominant peaks at 101 ± 3 cm-1 (i.e., In-In bonding mode) and 201 ± 3 cm-1 (i.e., Se-Se bonding mode) for each P composition in In6Se7. An extra peak at approximately 171 ± 2 cm-1 is observed and it shows enhancement at the highest P composition of In6Se7:P 5%. This mode is attributed to P-Se bonding caused by P doping inside In6Se7. All the doped and undoped In6Se7:P showed n-type conductivity, and their carrier concentrations increased with the P dopant is increased. Temperature-dependent resistivity revealed a reduction in activation energy (for the donor), as the P content is increased in the In6Se7:P samples. Kelvin probe measurement shows a decrease in work function (i.e., an energy increase of Fermi level) of the n-type In6Se7 multilayers with the increase of P content. The indirect and direct band gaps for all of the multilayer In6Se7:P of different P composition are identical. They are determined to be 0.732 eV (indirect) and 0.772 eV (direct) obtained by microtransmittance and microthermoreflectance (µTR) measurements. A rectified n-n+ homojunction was formed by stacking multilayered In6Se7/In6Se7:P 5%. The built-in potential is about Vbi ∼ 0.15 V. It agrees well with the work function difference between the two layer compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...