Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(22): eabm7863, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658031

RESUMEN

General translational repression is a key process that reduces energy consumption under hypoxia. Here, we show that plant stress-activated general control nonderepressible 2 (GCN2) was activated to regulate the reduction in polysome loading during submergence in Arabidopsis. GCN2 signaling was activated by ethylene under submergence. GCN2 activity was reduced in etr1-1, but not in ein2-5 or eil1ein3, under submergence, suggesting that GCN2 activity is regulated by a noncanonical ethylene signaling pathway. Polysome loading was not reduced in ein2-5 under submergence, implying that ethylene modulates translation via both EIN2 and GCN2. Transcriptomic analysis demonstrated that EIN2 and GCN2 regulate not only general translational repression but also translational enhancement of specific mRNAs under submergence. Together, these results demonstrate that during submergence, entrapped ethylene triggers GCN2 and EIN2 to regulate translation dynamics and ensure the translation of stress response proteins.

2.
Proc Natl Acad Sci U S A ; 116(8): 3300-3309, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30723146

RESUMEN

The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Oryza/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Adaptación Fisiológica/genética , Anaerobiosis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Oryza/crecimiento & desarrollo , Transducción de Señal/genética , Especificidad por Sustrato
3.
Plant Biotechnol J ; 16(12): 2027-2041, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29704444

RESUMEN

The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Orchidaceae/genética , Fitomejoramiento/métodos , Adaptación Fisiológica/genética , Genoma de Planta/fisiología , Cariotipificación
4.
Transgenic Res ; 21(5): 983-93, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22203520

RESUMEN

Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.


Asunto(s)
Citrullus/genética , Cucumovirus/patogenicidad , Resistencia a la Enfermedad , Plantas Modificadas Genéticamente/virología , Transgenes , Agrobacterium/genética , Agrobacterium/metabolismo , Northern Blotting , Southern Blotting , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Citrullus/inmunología , Citrullus/virología , Cucumovirus/genética , Cucumovirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Genes Virales , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genoma de Planta , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...