Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668589

RESUMEN

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Asunto(s)
Clonación Molecular , Serpientes de Coral , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animales , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Secuencia de Aminoácidos , Masculino
2.
Mol Ther ; 32(2): 440-456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38213031

RESUMEN

Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , MicroARNs , Viroterapia Oncolítica , Virus Oncolíticos , Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , Virus Oncolíticos/genética , Virus Zika/genética , MicroARNs/genética , Infección por el Virus Zika/terapia , Viroterapia Oncolítica/métodos
4.
PLoS One ; 18(2): e0281344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745643

RESUMEN

Leptospirosis is a public health concern with lethality around 15% of the total cases. The current vaccines against Leptospira infection based on bacterins have several limitations, which require urgent development of new ones. In this context, groundbreaking approaches such as peptide-vaccines could be used to come around with promising results. Our goal was to identify conserved and immunogenic epitopes from the lipoprotein LruC that could interact with Major Histocompatibility Complex (MHC) I and II. LruC is a conserved lipoprotein expressed during leptospirosis that is considered among vaccine candidates and can be used as source for development of peptide-based vaccines. We searched for peptides that would be recognized by antibodies from either serum of hamsters previously immunized with low-LPS bacterin vaccines or from serum of patients diagnosed with leptospirosis. Immuno properties of seven peptides from LruC protein were evaluated in silico and by Dot Blot assay, and validate by ELISA. Preliminary results pointed one promising peptide that was recognized by the sera. In conclusion, the immunoinformatic approach helps the search and screening of peptides, while the Dot Blot assay, a simple and effective tool, helps to test and validate them. Thus, these prospective techniques together were validated to identify and validate potential peptides for further investigation as peptide-based vaccines or diagnostic methods.


Asunto(s)
Leptospira , Leptospirosis , Animales , Cricetinae , Humanos , Estudios Prospectivos , Leptospirosis/diagnóstico , Leptospirosis/prevención & control , Antígenos Bacterianos , Péptidos/metabolismo , Vacunas Bacterianas , Anticuerpos Antibacterianos , Lipoproteínas/metabolismo , Desarrollo de Vacunas
6.
Front Microbiol ; 13: 1051698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519163

RESUMEN

Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.

7.
Front Microbiol ; 13: 1040093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386719

RESUMEN

Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.

8.
PLoS One ; 17(10): e0274943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256646

RESUMEN

The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15µg H7N9, 1B) IB160 + 7.5µg H7N9, 1C) IB160 + 3.75µg H7N9, 2A) SE + 15µg H7N9, 2B) SE + 7.5µg H7N9, 2C) SE + 3.75µg H7N9, 3) unadjuvanted vaccine 15µg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Escualeno , Pandemias/prevención & control , Polisorbatos , Emulsiones , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Agua
9.
Front Bioeng Biotechnol ; 9: 755045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733833

RESUMEN

Immunoassays are widely used for detection of antibodies against specific antigens in diagnosis, as well as in electrophoretic techniques such as Western Blotting. They usually rely on colorimetric, fluorescent or chemiluminescent methods for detection. Whereas the chemiluminescence methods are more sensitive and widely used, they usually suffer of fast luminescence decay. Here we constructed a novel bioluminescent fusion protein based on the N-terminal ZZ portion of protein A and the brighter green-blue emitting Amydetes vivianii firefly luciferase. In the presence of D-luciferin/ATP assay solution, the new fusion protein, displays higher bioluminescence activity, is very thermostable and produces a sustained emission (t1/2 > 30 min). In dot blots, we could successfully detect rabbit IgG against firefly luciferases, Limpet Haemocyanin, and SARS-CoV-2 Nucleoprotein (1-250 ng), as well as the antigen bound antibodies using either CCD imaging, and even photography using smartphones. Using CCD imaging, we could detect up to 100 pg of SARS-CoV-2 Nucleoprotein. Using this system, we could also successfully detect firefly luciferase and SARS-CoV-2 nucleoprotein in Western Blots (5-250 ng). Comparatively, the new fusion protein displays slightly higher and more sustained luminescent signal when compared to commercial HRP-labeled secondary antibodies, constituting a novel promising alternative for Western Blotting and immunoassays.

10.
EBioMedicine ; 73: 103642, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34678609

RESUMEN

Interferons are innate and adaptive cytokines involved in many biological responses, in particular, viral infections. With the final response the result of the balance of the different types of Interferons. Cytokine storms are physiological reactions observed in humans and animals in which the innate immune system causes an uncontrolled and excessive release of pro-inflammatory signaling molecules. The excessive and prolonged presence of these cytokines can cause tissue damage, multisystem organ failure and death. The role of Interferons in virus clearance, tissue damage and cytokine storms are discussed, in view of COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The imbalance of Type I, Type II and Type III Interferons during a viral infection contribute to the clinical outcome, possibly together with other cytokines, in particular, TNFα, with clear implications for clinical interventions to restore their correct balance.


Asunto(s)
COVID-19/patología , Interferones/metabolismo , COVID-19/complicaciones , COVID-19/virología , Síndrome de Liberación de Citoquinas/etiología , Citocinas/metabolismo , Humanos , SARS-CoV-2/aislamiento & purificación , Síndrome Respiratorio Agudo Grave/etiología , Índice de Severidad de la Enfermedad
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972420

RESUMEN

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.


Asunto(s)
Bothrops/genética , Venenos de Crotálidos/genética , Evolución Molecular , Genoma/genética , Venenos de Serpiente/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bothrops/clasificación , Venenos de Crotálidos/clasificación , Femenino , Perfilación de la Expresión Génica/métodos , Filogenia , Proteoma/metabolismo , Proteómica/métodos , RNA-Seq/métodos , Análisis de Secuencia de ADN/métodos , Venenos de Serpiente/clasificación
12.
BMC Microbiol ; 21(1): 99, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789603

RESUMEN

BACKGROUND: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.


Asunto(s)
Chaperonina 60/inmunología , Citocinas/inmunología , Interacciones Huésped-Patógeno/inmunología , Leptospira/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología
13.
Front Immunol ; 12: 624191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777004

RESUMEN

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.


Asunto(s)
Hemostasis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Vacunas Antiprotozoos/administración & dosificación , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/prevención & control , Biología de Sistemas , Animales , Cercarias/inmunología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Hemostasis/genética , Interacciones Huésped-Parásitos , Péptidos y Proteínas de Señalización Intercelular/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/parasitología , Ratones Endogámicos C57BL , Análisis por Micromatrices , Vacunas Antiprotozoos/inmunología , Schistosoma mansoni/patogenicidad , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/metabolismo , Esquistosomiasis mansoni/parasitología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/parasitología , Balance Th1 - Th2 , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/parasitología , Factores de Tiempo , Transcriptoma , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
15.
Front Immunol ; 12: 788185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992603

RESUMEN

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.


Asunto(s)
Antígenos Helmínticos/administración & dosificación , Ascariasis/prevención & control , Ascaris suum/inmunología , Enfermedades Desatendidas/prevención & control , Vacunas Antiprotozoos/administración & dosificación , Animales , Antígenos Helmínticos/inmunología , Ascariasis/inmunología , Ascariasis/parasitología , Ascariasis/patología , Ascaris suum/aislamiento & purificación , Femenino , Humanos , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología , Ratones , Enfermedades Desatendidas/inmunología , Enfermedades Desatendidas/parasitología , Enfermedades Desatendidas/patología , Vacunas Antiprotozoos/inmunología , Células Th2/inmunología , Eficacia de las Vacunas , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
16.
Appl Microbiol Biotechnol ; 105(1): 169-183, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33201277

RESUMEN

The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stability and biological activity than the wild type of human G-CSF because of its mutations. We developed a production process of nartograstim in a 10-L bioreactor using auto-induction or chemically defined medium. After cell lysis, centrifugation, IB washing, and IB solubilization, the following three refolding methods were evaluated: diafiltration, dialysis, and direct dilution in two refolding buffers. Western blot and SDS-PAGE confirmed the identity of 18.8-kDa bands as nartograstim in both cultures. The auto-induction medium produced 1.17 g/L and chemically defined medium produced 0.95 g/L. The dilution method yielded the highest percentage of refolding (99%). After refolding, many contaminant proteins precipitated during pH adjustment to 5.2, increasing purity from 50 to 78%. After applying the supernatant to cation exchange chromatography (CEC), nartograstim recovery was low and the purity was 87%. However, when the refolding solution was applied to anion exchange chromatography followed by CEC, 91%-98% purity and 2.2% recovery were obtained. The purification process described in this work can be used to obtain nartograstim with high purity, structural integrity, and the expected biological activity. KEY POINTS: • Few papers report the final recovery of the purification process from inclusion bodies. • The process developed led to high purity and reasonable recovery compared to literature. • Nartograstim biological activity was demonstrated in mice using a neutropenia model.


Asunto(s)
Antibacterianos , Escherichia coli , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Animales , Escherichia coli/genética , Humanos , Ratones , Proteínas Recombinantes/biosíntesis
17.
Front Immunol ; 11: 572562, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240263

RESUMEN

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.


Asunto(s)
Complemento C3b/metabolismo , Factor B del Complemento/metabolismo , Leptospira interrogans/fisiología , Leptospira/fisiología , Leptospirosis/metabolismo , Properdina/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Procesos de Crecimiento Celular , Vía Alternativa del Complemento , Citotoxicidad Inmunológica , Humanos , Leptospira/patogenicidad , Leptospira interrogans/patogenicidad , Leptospirosis/inmunología , Properdina/inmunología , Unión Proteica , Virulencia
18.
PLoS One ; 15(6): e0233632, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32492039

RESUMEN

Increasing pandemic influenza vaccine manufacturing capacity is considered strategic by WHO. Adjuvant use is key in this strategy in order to spare the vaccine doses and by increasing immune protection. We describe here the production and stability studies of a squalene based oil-in-water emulsion, adjuvant IB160, and the immune response of the H7N9 vaccine combined with IB160. To qualify the production of IB160 we produced 10 consistency lots of IB160 and the average results were: pH 6.4±0.05; squalene 48.8±.0.03 mg/ml; osmolality 47.6±6.9 mmol/kg; Z-average 157±2 nm, with polydispersity index (PDI) of 0.085±0.024 and endotoxin levels <0.5 EU/mL. The emulsion particle size was stable for at least six months at 25°C and 24 months at 4-8°C. Two doses of H7N9 vaccine formulated at 7.5 µg/dose or 15 µg/dose with adjuvant IB160 showed a significant increase of hemagglutination inhibition (HAI) titers in sera of immunized BALB/c mice when compared to control sera from animals immunized with the H7N9 antigens without adjuvant. Thus the antigen-sparing capacity of IB160 can potentially increase the production of the H7N9 pandemic vaccine and represents an important achievement for preparedness against pandemic influenza and a successful North (IDRI) to South (Butantan Institute) technology transfer for the production of the adjuvant emulsion IB160.


Asunto(s)
Adyuvantes Farmacéuticos/síntesis química , Emulsiones/síntesis química , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Pandemias/prevención & control , Adyuvantes Farmacéuticos/química , Animales , Brasil/epidemiología , Estabilidad de Medicamentos , Emulsiones/química , Pruebas de Inhibición de Hemaglutinación , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Polisorbatos/química , Escualeno/química , Transferencia de Tecnología , Vacunación/métodos
19.
NPJ Vaccines ; 5(1): 38, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411401

RESUMEN

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

20.
Environ Pollut ; 257: 113554, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31767231

RESUMEN

The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.


Asunto(s)
Hidroquinonas/toxicidad , Inmunidad Humoral/efectos de los fármacos , Vacunas contra la Influenza , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA