Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38750617

RESUMEN

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Asunto(s)
Glicosiltransferasas , beta-Glucanos , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo
3.
Commun Biol ; 6(1): 660, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349576

RESUMEN

AXL is a receptor tyrosine kinase that is often overexpressed in cancers. It contributes to pathophysiology in cancer progression and therapeutic resistance, making it an emerging therapeutic target. The first-in-class AXL inhibitor bemcentinib (R428/BGB324) has been granted fast track designation by the U.S. Food and Drug Administration (FDA) in STK11-mutated advanced metastatic non-small cell lung cancer and was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal molecular subtype. In this study, we further explored AXL's role in mediating DNA damage responses by using OC as a disease model. AXL inhibition using R428 resulted in the increase of DNA damage with the concurrent upregulation of DNA damage response signalling molecules. Furthermore, AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress. Combinatory use of AXL and ATR inhibitors showed additive effects in OC. Through SILAC co-immunoprecipitation mass spectrometry, we identified a novel binding partner of AXL, SAM68, whose loss in OC cells harboured phenotypes in DNA damage responses similar to AXL inhibition. In addition, AXL- and SAM68-deficiency or R428 treatment induced elevated levels of cholesterol and upregulated genes in the cholesterol biosynthesis pathway. There might be a protective role of cholesterol in shielding cancer cells against DNA damage induced by AXL inhibition or SMA68 deficiency.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Ováricas , Humanos , Femenino , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Proteínas Tirosina Quinasas Receptoras , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Daño del ADN
4.
Nat Methods ; 19(7): 833-844, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697834

RESUMEN

Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive. Here, we show that Oxford Nanopore direct RNA sequencing can be used to identify inosine-containing sites in native transcriptomes with high accuracy. We trained convolutional neural network models to distinguish inosine from adenosine and guanosine, and to estimate the modification rate at each editing site. Furthermore, we demonstrated their utility on the transcriptomes of human, mouse and Xenopus. Our approach expands the toolkit for studying adenosine-to-inosine editing and can be further extended to investigate other RNA modifications.


Asunto(s)
Nanoporos , ARN , Adenosina/genética , Animales , Inosina/genética , Ratones , ARN/genética , ARN/metabolismo , Edición de ARN , Análisis de Secuencia de ARN
5.
Sci Adv ; 7(41): eabh2443, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613780

RESUMEN

Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high-throughput chemical library screens, retinoids are found to be potent promoters of MET that inhibit tumorigenicity in basal-like breast cancer. Cell state transitions are defined by reprogramming of lipid metabolism. Retinoids bind cognate nuclear receptors, which target lipid metabolism genes, thereby redirecting fatty acids for ß-oxidation in the mesenchymal cell state towards lipid storage in the epithelial cell state. Disruptions of key metabolic enzymes mediating this flux inhibit MET. Conversely, perturbations to fatty acid oxidation (FAO) rechannel fatty acid flux and promote a more epithelial cell phenotype, blocking EMT-driven breast cancer metastasis in animal models. FAO impinges on the epigenetic control of EMT through acetyl-CoA-dependent regulation of histone acetylation on EMT genes, thus determining cell states.

6.
Bioresour Bioprocess ; 8(1): 93, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603939

RESUMEN

Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.

7.
Proteomics ; 19(21-22): e1800482, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31364262

RESUMEN

Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.


Asunto(s)
Biomarcadores de Tumor/genética , Cistadenoma Seroso/genética , Neoplasias Ováricas/genética , Polisacáridos/genética , Biomarcadores de Tumor/química , Cromatografía Liquida , Cistadenoma Seroso/patología , Femenino , Genómica/métodos , Glicosilación , Humanos , Imagen Molecular , Estadificación de Neoplasias , Neoplasias Ováricas/patología , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Microambiente Tumoral/genética
8.
Br J Cancer ; 119(12): 1538-1551, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30385822

RESUMEN

BACKGROUND: Although NGLY1 is known as a pivotal enzyme that catalyses the deglycosylation of denatured glycoproteins, information regarding the responses of human cancer and normal cells to NGLY1 suppression is limited. METHODS: We examined how NGLY1 expression affects viability, tumour growth, and responses to therapeutic agents in melanoma cells and an animal model. Molecular mechanisms contributing to NGLY1 suppression-induced anticancer responses were revealed by systems biology and chemical biology studies. Using computational and medicinal chemistry-assisted approaches, we established novel NGLY1-inhibitory small molecules. RESULTS: Compared with normal cells, NGLY1 was upregulated in melanoma cell lines and patient tumours. NGLY1 knockdown caused melanoma cell death and tumour growth retardation. Targeting NGLY1 induced pleiotropic responses, predominantly stress signalling-associated apoptosis and cytokine surges, which synergise with the anti-melanoma activity of chemotherapy and targeted therapy agents. Pharmacological and molecular biology tools that inactivate NGLY1 elicited highly similar responses in melanoma cells. Unlike normal cells, melanoma cells presented distinct responses and high vulnerability to NGLY1 suppression. CONCLUSION: Our work demonstrated the significance of NGLY1 in melanoma cells, provided mechanistic insights into how NGLY1 inactivation leads to eradication of melanoma with limited impact on normal cells, and suggested that targeting NGLY1 represents a novel anti-melanoma strategy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Interferón gamma/fisiología , Melanoma/tratamiento farmacológico , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/antagonistas & inhibidores , Factor de Transcripción Activador 4/fisiología , Animales , Células Cultivadas , Citocinas/análisis , Perfilación de la Expresión Génica , Humanos , Interferón gamma/genética , Melanoma/patología , Ratones , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/fisiología , Células Madre Pluripotentes/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Transducción de Señal/fisiología , Factor de Transcripción CHOP/fisiología
9.
Rapid Commun Mass Spectrom ; 31(10): 825-841, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28271569

RESUMEN

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of the proteome of a tissue has been an established technique for the past decade. In the last few years, MALDI-MSI of the N-glycome has emerged as a novel MALDI-MSI technique. To assess the accuracy and clinical significance of the N-linked glycan spatial distribution, we have developed a method that utilises MALDI-MSI followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) in order to assign glycan structures to the differentiating MALDI-MSI glycan masses released from the tissue glycoproteins. METHODS AND RESULTS: Our workflow presents a comprehensive list of instructions on how to (i) apply MALDI-MSI to spatially map the N-glycome across formalin-fixed paraffin-embedded (FFPE) clinical samples, (ii) structurally characterise N-glycans extracted from consecutive FFPE tissue sections by LC/MS/MS, and (iii) match relevant N-glycan masses from MALDI-MSI with confirmed N-glycan structures determined by LC/MS/MS. CONCLUSIONS: Our protocol provides groups that are new to this technique with instructions how to establish N-glycan MALDI-MSI in their laboratory. Furthermore, the method assigns N-glycan structural detail to the masses obtained in the MALDI-MS image. Copyright © 2017 John Wiley & Sons, Ltd.

10.
Plant Physiol ; 170(4): 1962-74, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26850276

RESUMEN

The walls of Nicotiana alata pollen tubes contain a linear arabinan composed of (1,5)-α-linked arabinofuranose residues. Although generally found as a side chain on the backbone of the pectic polysaccharide rhamnogalacturonan I, the arabinan in N. alata pollen tubes is considered free, as there is no detectable rhamnogalacturonan I in these walls. Carbohydrate-specific antibodies detected arabinan epitopes at the tip and along the shank of N. alata pollen tubes that are predominantly part of the primary layer of the bilayered wall. A sequence related to ARABINAN DEFICIENT1 (AtARAD1), a presumed arabinan arabinosyltransferase from Arabidopsis (Arabidopsis thaliana), was identified by searching an N alata pollen transcriptome. Transcripts for this ARAD1-like sequence, which we have named N. alata ARABINAN DEFICIENT-LIKE1 (NaARADL1), accumulate in various tissues, most abundantly in the pollen grain and tube, and encode a protein that is a type II membrane protein with its catalytic carboxyl terminus located in the Golgi lumen. The NaARADL1 protein can form homodimers when transiently expressed in Nicotiana benthamiana leaves and heterodimers when coexpressed with AtARAD1 The expression of NaARADL1 in Arabidopsis led to plants with more arabinan in their walls and that also exuded a guttation fluid rich in arabinan. Chemical and enzymatic characterization of the guttation fluid showed that a soluble, linear α-(1,5)-arabinan was the most abundant polymer present. These results are consistent with NaARADL1 having an arabinan (1,5)-α-arabinosyltransferase activity.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Nicotiana/enzimología , Polen/enzimología , Polisacáridos/metabolismo , Fluorescencia , Aparato de Golgi/metabolismo , Pentosiltransferasa/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Multimerización de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fracciones Subcelulares/enzimología
11.
Plant Cell ; 27(3): 754-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25770111

RESUMEN

The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-ß-D-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.


Asunto(s)
Pared Celular/metabolismo , Poaceae/metabolismo , Polisacáridos/biosíntesis , beta-Glucanos/metabolismo , Dominio Catalítico , Pared Celular/ultraestructura , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hordeum/metabolismo , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Meristema/metabolismo , Microsomas/metabolismo , Modelos Biológicos , Péptido Hidrolasas/metabolismo , Hojas de la Planta/metabolismo , Unión Proteica , Plantones/metabolismo , Fracciones Subcelulares/metabolismo , Nicotiana/metabolismo , Triticum/metabolismo
12.
Methods Mol Biol ; 854: 319-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22311770

RESUMEN

Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.


Asunto(s)
Células de la Médula Ósea/citología , Espacio Intracelular/metabolismo , Coloración y Etiquetado/métodos , Electroforesis Bidimensional Diferencial en Gel/métodos , Células de la Médula Ósea/metabolismo , Carbocianinas/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular , Colorantes/metabolismo , Citoplasma/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA