RESUMEN
Menopause-associated mood disorder is characterized by emotional depression, anxiety, and stress, which accompany hypogonadism in women in the menopausal phase. The current treatment for menopause-associated mood disorder provides only symptomatic relief and is associated with many side effects. Supplementation with vitamin E has been shown to be effective in ameliorating anxiety and depression. However, the effects of vitamin E and its underlying mechanism in ameliorating menopause-associated mood disorders remain uncertain. This work evaluated the effects of α-tocopherol and tocotrienol-rich palm oil extract on depressive and anxiety-related phenotypes induced by estrogen deficiency through ovariectomy in mice. Our study revealed that ovariectomized mice exhibited alterations in behavior indicative of depressive- and anxiety-like behaviors. The serum corticosterone level, a glucocorticoid hormone associated with stress, was found to be elevated in ovariectomized mice as compared to the sham group. Oral administration of α-tocopherol (50 and 100 mg/kg) and tocotrienol-rich palm oil extract (100 and 200 mg/kg) for 14 days alleviated these behavioral changes, as observed in open field, social interaction, and tail suspension tests. However, treatment with tocotrienol-rich palm oil extract, but not α-tocopherol, modulated the depressive- and anxiety-like responses in ovariectomized mice subjected to chronic restraint stress. Both treatments suppressed the elevated serum corticosterone level. Our findings suggested that α-tocopherol and tocotrienol-rich palm oil extract alleviated menopause-associated mood disorder, at least in part, by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The findings of this study can provide a new foundation for the treatment of menopause-associated depressive- and anxiety-like phenotypes, for the betterment of psychological wellbeing.
Asunto(s)
Menopausia , Ovariectomía , Aceite de Palma , Extractos Vegetales , Tocotrienoles , alfa-Tocoferol , Animales , Femenino , Tocotrienoles/farmacología , alfa-Tocoferol/farmacología , Ratones , Menopausia/efectos de los fármacos , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Trastornos del Humor/tratamiento farmacológico , Depresión/tratamiento farmacológico , Depresión/sangre , Corticosterona/sangreRESUMEN
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1ß/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Miocitos Cardíacos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Sorafenib , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/toxicidad , Sorafenib/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Masculino , Ratones Endogámicos C57BL , Transportador 2 de Sodio-Glucosa/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Cardiotoxicidad/prevención & control , Miocarditis/inducido químicamente , Miocarditis/patología , Miocarditis/prevención & control , Miocardio/patología , Miocardio/metabolismo , Antineoplásicos/toxicidadRESUMEN
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herb belonging to the Cucurbitaceae family that has a long history of usage in traditional oriental medicine. Gypenosides are the primary bioactive compounds in Gynostemma pentaphyllum. Because of the medicinal value of gypenosides, functional food and supplements containing gypenosides have been promoted and consumed with popularity, especially among Asian communities. This review presented the progress made in the research of pharmacological properties of gypenosides on diseases of the nervous system and their possible mechanism of action. To date, preclinical studies have demonstrated the therapeutic effects of gypenosides in alleviating neuropsychiatric disorders like depression, Parkinson's disease, Alzheimer's disease, secondary dementia, stroke, optic neuritis, etc. Pharmacological studies have discovered that gypenosides can modulate various major signaling pathways like NF-κB, Nrf2, AKT, ERK1/2, contributing to the neuroprotective properties. However, there is a dearth of clinical research on gypenosides, with current investigations on the compounds being mainly conducted in vitro and on animals. Future studies focusing on isolating and purifying novel gypenosides and investigations on exploring the potential molecular mechanism underlying their biological activities are warranted, which may serve as a foundation for further clinical trials for the betterment of human health.
Asunto(s)
Gynostemma , Fármacos Neuroprotectores , Extractos Vegetales , Gynostemma/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Trastornos Mentales/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Transducción de Señal/efectos de los fármacosRESUMEN
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing.
RESUMEN
Background: Stroke is a common cause of disability and mortality worldwide; however, effective therapy remains limited. In stroke pathogenesis, ischemia/reperfusion injury triggers gliosis and neuroinflammation that further activates matrix metalloproteinases (MMPs), thereby damaging the blood-brain barrier (BBB). Increased BBB permeability promotes macrophage infiltration and brain edema, thereby worsening behavioral outcomes and prognosis. Histone deacetylase 1 (HDAC1) is a repressor of epigenomic gene transcription and participates in DNA damage and cell cycle regulation. Although HDAC1 is deregulated after stroke and is involved in neuronal loss and DNA repair, its role in neuroinflammation and BBB damage remains unknown. Methods: The rats with cerebral ischemia were evaluated in behavioral outcomes, levels of inflammation in gliosis and cytokines, and BBB damage by using an endothelin-1-induced rat model with cerebral ischemia/reperfusion injury. Results: The results revealed that HDAC1 dysfunction could promote BBB damage through the destruction of tight junction proteins, such as ZO-1 and occludin, after stroke in rats. HDAC1 inhibition also increased the levels of astrocyte and microglial gliosis, tumor necrosis factor-alpha, interleukin-1 beta, lactate dehydrogenase, and reactive oxygen species, further triggering MMP-2 and MMP-9 activity. Moreover, modified neurological severity scores for the cylinder test revealed that HDAC1 inhibition deteriorated behavioral outcomes in rats with cerebral ischemia. Discussion: HDAC1 plays a crucial role in ischemia/reperfusion-induced neuroinflammation and BBB damage, thus indicating its potential as a therapeutic target.
RESUMEN
Chronic pain conditions within clinical populations are correlated with a high incidence of depression, and researchers have reported their high rate of comorbidity. Clinically, chronic pain worsens the prevalence of depression, and depression increases the risk of chronic pain. Individuals suffering from chronic pain and depression respond poorly to available medications, and the mechanisms underlying the comorbidity of chronic pain and depression remain unknown. We used spinal nerve ligation (SNL) in a mouse model to induce comorbid pain and depression. We combined behavioral tests, electrophysiological recordings, pharmacological manipulation, and chemogenetic approaches to investigate the neurocircuitry mechanisms of comorbid pain and depression. SNL elicited tactile hypersensitivity and depression-like behavior, accompanied by increased and decreased glutamatergic transmission in dorsal horn neurons and midbrain ventrolateral periaqueductal gray (vlPAG) neurons, respectively. Intrathecal injection of lidocaine, a sodium channel blocker, and gabapentin ameliorated SNL-induced tactile hypersensitivity and neuroplastic changes in the dorsal horn but not depression-like behavior and neuroplastic alterations in the vlPAG. Pharmacological lesion of vlPAG glutamatergic neurons induced tactile hypersensitivity and depression-like behavior. Chemogenetic activation of the vlPAG-rostral ventromedial medulla (RVM) pathway ameliorated SNL-induced tactile hypersensitivity but not SNL-elicited depression-like behavior. However, chemogenetic activation of the vlPAG-ventral tegmental area (VTA) pathway alleviated SNL-produced depression-like behavior but not SNL-induced tactile hypersensitivity. Our study demonstrated that the underlying mechanisms of comorbidity in which the vlPAG acts as a gating hub for transferring pain to depression. Tactile hypersensitivity could be attributed to dysfunction of the vlPAG-RVM pathway, while impairment of the vlPAG-VTA pathway contributed to depression-like behavior.
Asunto(s)
Dolor Crónico , Sustancia Gris Periacueductal , Ratas , Ratones , Animales , Sustancia Gris Periacueductal/metabolismo , Dolor Crónico/metabolismo , Área Tegmental Ventral , Ratas Sprague-Dawley , Depresión/complicacionesRESUMEN
Interferons (IFNs) are important in controlling the innate immune response to viral infections. Besides that, studies have found that IFNs also have antimicrobial, antiproliferative/antitumor and immunomodulatory effects. IFNs are divided into Type I, II and III. Type I IFNs, in particular IFN-α, is an approved treatment for hepatitis C. However, patients developed neuropsychological disorders during treatment. IFN-α induces proinflammatory cytokines, indoleamine 2,3-dioxygenase (IDO), oxidative and nitrative stress that intensifies the body's inflammatory response in the treatment of chronic inflammatory disease. The severity of the immune response is related to behavioral changes in both animal models and humans. Reactive oxygen species (ROS) is important for synaptic plasticity and long-term potentiation (LTP) in the hippocampus. However, excess ROS will generate highly reactive free radicals which may lead to neuronal damage and neurodegeneration. The limbic system regulates memory and emotional response, damage of neurons in this region is correlated with mood disorders. Due to the drawbacks of the treatment, often patients will not complete the treatment sessions, and this affects their recovery process. However, with proper management, this could be avoided. This review briefly describes the different types of IFNs and its pharmacological and clinical usages and a focus on IFN-α and its implications on depression.
Asunto(s)
Trastorno Depresivo , Interferón Tipo I , Animales , Humanos , Especies Reactivas de Oxígeno , Interferón-alfa/uso terapéutico , Interferón Tipo I/farmacología , Citocinas , Trastorno Depresivo/inducido químicamente , Trastorno Depresivo/tratamiento farmacológicoRESUMEN
Slow skeletal muscle troponin T (TNNT1) as a poor prognostic indicator is upregulated in colon and breast cancers. However, the role of TNNT1 in the disease prognosis and biological functions of hepatocellular carcinoma (HCC) is still unclear. The Cancer Genome Atlas (TCGA), real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to evaluate the TNNT1 expression of human HCC. The impact of TNNT1 levels on disease progression and survival outcome was studied using TCGA analysis. Moreover, the bioinformatics analysis and HCC cell culture were used to investigate the biological functions of TNNT1. Besides, the immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) were used to detect the extracellular TNNT1 of HCC cells and circulating TNNT1 of HCC patients, respectively. The effect of TNNT1 neutralization on oncogenic behaviors and signaling was further validated in the cultured hepatoma cells. In this study, tumoral and blood TNNT1 was upregulated in HCC patients based on the analyses using bioinformatics, fresh tissues, paraffin sections, and serum. From the multiple bioinformatics tools, the TNNT1 overexpression was associated with advanced stage, high grade, metastasis, vascular invasion, recurrence, and poor survival outcome in HCC patients. By the cell culture and TCGA analyses, TNNT1 expression and release were positively correlated with epithelial-mesenchymal transition (EMT) processes in HCC tissues and cells. Moreover, TNNT1 neutralization suppressed oncogenic behaviors and EMT in hepatoma cells. In conclusion, TNNT1 may serve as a non-invasive biomarker and drug target for HCC management. This research finding may provide a new insight for HCC diagnosis and treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Músculo Esquelético/metabolismo , Pronóstico , Troponina T/genéticaRESUMEN
The clinical use of mifepristone for medical abortions has been established in 1987 in France and since 2000 in the United States. Mifepristone has a limited medical period that lasts <9 weeks of gestation, and the incidence of mifepristone treatment failure increases with gestation time. Mifepristone functions as an antagonist for progesterone and glucocorticoid receptors. Studies have confirmed that mifepristone treatments can directly contribute to endometrium disability by interfering with the endometrial receptivity of the embryo, thus causing decidual endometrial degeneration. However, whether mifepristone efficacy directly affects embryo survival and growth is still an open question. Some women choose to continue their pregnancy after mifepristone treatment fails, and some women express regret and seek medically unapproved mifepristone antagonization with high doses of progesterone. These unapproved treatments raise the potential risk of embryonic fatality and developmental anomalies. Accordingly, in the present study, we collected mouse blastocysts ex vivo and treated implanted blastocysts with mifepristone for 24 h. The embryos were further cultured to day 8 in vitro to finish their growth in the early somite stage, and the embryos were then collected for RNA sequencing (control n = 3, mifepristone n = 3). When we performed a gene set enrichment analysis, our data indicated that mifepristone treatment considerably altered the cellular pathways of embryos in terms of viability, proliferation, and development. The data indicated that mifepristone was involved in hallmark gene sets of protein secretion, mTORC1, fatty acid metabolism, IL-2-STAT5 signaling, adipogenesis, peroxisome, glycolysis, E2F targets, and heme metabolism. The data further revealed that mifepristone interfered with normal embryonic development. In sum, our data suggest that continuing a pregnancy after mifepristone treatment fails is inappropriate and infeasible. The results of our study reveal a high risk of fetus fatality and developmental problems when pregnancies are continued after mifepristone treatment fails.
RESUMEN
Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.
Asunto(s)
Neoplasias Colorrectales , Dietilhexil Ftalato , Humanos , Plastificantes/análisis , Dietilhexil Ftalato/análisis , Glicosilación , Sialiltransferasas/metabolismoRESUMEN
Polycystic ovary syndrome (PCOS) is the most common reproductive disease affecting the hormone and metabolic status of women. Its associated symptoms are diverse among the patients, including hyperandrogenism, insulin resistance, anovulation, infertility, obesity, hirsutism, acne, and more. In addition, PCOS can potentially increase the risk of dysmenorrhea, endometriosis, endometrioma, and irritable bowel syndrome, which are highly related to pelvic pain and sexual difficulty. However, little known is whether PCOS exacerbates other chronic bodily pain or contributes to hyperalgesia. Health-related quality of Life (HRQoL) reflects the life satisfaction and quality derived by an individual from mental, physical, emotional, and social activities under specific conditions. In this study, we reviewed pain perception from HRQoL of PCOS patients (SF-36). The review data evidently indicated that pain perception is significantly more prevalent in patients with PCOS than in healthy controls, and obesity and infertile status could be the rationales associated with pain development. Nevertheless, underlying causes remain undetermined due to the limited information from SF-36. Furthermore, we reviewed pathophysiologic factors to pain development or exacerbation, such as the deregulation of inflammation levels, adipokines, and insulin resistance. Although current evidence of pain perception and pathophysiologic risk factors are solid in PCOS, patients' pain perception is often ignored in clinical settings. Clinicians should note the perception and treatment of pain in PCOS patients. The correlation or causality between pain and PCOS warrants further clinical examination and basic studies, thereby providing new insights into this topic in the context of clinical diagnosis and health care.
RESUMEN
Recreational use of alcohol is a social norm in many communities worldwide. Alcohol use in moderation brings pleasure and may protect the cardiovascular system. However, excessive alcohol consumption or alcohol abuse are detrimental to one's health. Three million deaths due to excessive alcohol consumption were reported by the World Health Organization. Emerging evidence also revealed the danger of moderate consumption, which includes the increased risk to cancer. Alcohol abuse and periods of withdrawal have been linked to depression and anxiety. Here, we present the effects of alcohol consumption (acute and chronic) on important brain structures-the frontal lobe, the temporal lobe, the limbic system, and the cerebellum. Apart from this, we also present the link between alcohol abuse and withdrawal and mood disorders in this review, thus drawing a link to oxidative stress. In addition, we also discuss the positive impacts of some pharmacotherapies used. Due to the ever-rising demands of life, the cycle between alcohol abuse, withdrawal, and mood disorders may be a never-ending cycle of destruction. Hence, through this review, we hope that we can emphasise the importance and urgency of managing this issue with the appropriate approaches.
Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Humanos , Alcoholismo/complicaciones , Síndrome de Abstinencia a Sustancias/etiología , Trastornos del Humor/complicaciones , Consumo de Bebidas Alcohólicas/efectos adversos , Trastornos de Ansiedad/complicacionesRESUMEN
Osteoporosis, or bone loss, is a disease that affects many women globally. As life expectancy increases, the risk of osteoporosis in women also increases, too, and this will create a burden on the healthcare and economic sectors of a country. Osteoporosis was once thought to be a disease that would occur only after menopause. However, many studies have shown that osteoporosis may develop even in the perimenopausal stage. Due to the erratic levels of estrogen and progesterone during the perimenopausal stage, studies suggest that women are exposed to the risk of developing osteoporosis even at this stage. The erratic hormonal changes result in the production of proinflammatory mediators and cause oxidative stress, which leads to the progressive loss of bone-building activities. Tocotrienols, members of vitamin E, have many health-promoting properties. Due to their powerful anti-oxidative and anti-inflammatory properties, tocotrienols have shown positive anti-osteoporotic properties in post-menopausal studies. Hence, we propose here that tocotrienols could also possibly alleviate perimenopausal osteoporosis by discussing in this review the connection between inflammatory mediators produced during perimenopause and the risk of osteoporosis. Tocotrienols could potentially be an anti-osteoporotic agent, but due to their low bioavailability, they have not been as effective as they could be. Several approaches have been evaluated to overcome this issue, as presented in this review. As the anti-osteoporotic effects of tocotrienols were mostly studied in post-menopausal models, we hope that this review could pave the way for more research to be done to evaluate their effect on peri-menopausal models so as to reduce the risk of osteoporosis from an earlier stage.
RESUMEN
RATIONALE: Clinical reports reveal that scopolamine, an acetylcholine muscarinic receptor antagonist, exerts rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic effects have not been fully identified. OBJECTIVES: The present study examines the cellular mechanisms by which scopolamine produces antidepressant-like effects through its action in the ventrolateral midbrain periaqueductal gray (vlPAG). METHODS: We used a well-established mouse model of depression induced by chronic restraint stress (CRS) exposure for 14 days. Behaviors were tested using the forced swim test (FST), tail suspension test (TST), female urine sniffing test (FUST), novelty-suppressed feeding test (NSFT), and locomotor activity (LMA). Synaptic transmission in the vlPAG was measured by whole-cell patch-clamp recordings. IntravlPAG microinjection was used to pharmacologically verify the signaling cascades of scopolamine in the vlPAG. RESULTS: The results demonstrated that intraperitoneal injection of scopolamine produced antidepressant-like effects in a dose-dependent manner without affecting locomotor activity. CRS elicited depression-like behaviors, whereas intraperitoneal injection of scopolamine alleviated CRS-induced depression-like behaviors. CRS diminished glutamatergic transmission in the vlPAG, while scopolamine reversed the above effects. Moreover, intravlPAG microinjection of the L-type voltage-dependent calcium channel (VDCC) blocker verapamil, tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) antagonist CNQX prevented scopolamine-induced antidepressant-like effects. CONCLUSIONS: Scopolamine ameliorated CRS-elicited depression-like behavior required activation of VDCC, resulting in activity-dependent release of brain-derived neurotrophic factor (BDNF), engaging the TrkB receptor and downstream mTORC1 signaling in the vlPAG.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sustancia Gris Periacueductal , Ratones , Animales , Femenino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Canales de Calcio Tipo L/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Escopolamina/farmacología , Antagonistas Muscarínicos/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores Muscarínicos , Mamíferos/metabolismoRESUMEN
Despite the worldwide prevalence and severe complications of type 2 diabetes mellitus (T2DM), the pathophysiological mechanisms underlying the development of diabetic polyneuropathy (DPN) are poorly understood. Beyond strict control of glucose levels, clinical trials for reversing DPN have largely failed. Therefore, understanding the pathophysiological and molecular mechanisms underlying DPN is crucial. Accordingly, this study explored biochemical and neuropathological deficits in a rat model of T2DM induced through high-fat diet (HFD) feeding along with two low-dose streptozotocin (STZ) injections; the deficits were explored through serum lipid, neurobehavioral, neurophysiology, neuropathology, and immunohistochemistry examinations. Our HFD/STZ protocol induced (1) mechanical hyperalgesia and depression-like behaviors, (2) loss of intraepidermal nerve fibers (IENFs) and reduced axonal diameters in sural nerves, and (3) decreased compound muscle action potential. In addition to hyperglycemia, which was correlated with the degree of mechanical hyperalgesia and loss of IENFs, we observed that hypertriglyceridemia was the most dominant deficit in the lipid profiles of the diabetic rats. In particular, SEPT9, the fourth component of the cytoskeleton, increased in the satellite glial cells (SGCs) of the dorsal root ganglia (DRG) in the T2DM-like rats. The number of SEPT9(+) SGCs/DRG was correlated with serum glucose levels and mechanical thresholds. Our findings indicate the putative molecular mechanism underlying DPN, which presumably involves the interaction of SGCs and DRG neurons; nevertheless, further functional research is warranted to clarify the role of SEPT9 in DPN.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , Septinas , Animales , Ratas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/patología , Ganglios Espinales/patología , Glucosa/uso terapéutico , Hiperalgesia , Lípidos/uso terapéutico , Neuralgia/patología , Neuroglía/patología , Ratas Sprague-Dawley , Septinas/genética , Estreptozocina , Regulación hacia ArribaRESUMEN
Major depressive disorder (MDD) is a common neuropsychiatric disorder affecting the mood and mental well-being. Its pathophysiology remains elusive due to the complexity and heterogeneity of this disorder that affects millions of individuals worldwide. Chronic stress is frequently cited as the one of the risk factors for MDD. To date, the conventional monoaminergic theory (serotonin, norepinephrine, and/or dopamine dysregulation) has received the most attention in the treatment of MDD, and all available classes of antidepressants target these monoaminergic systems. However, the contributions of other neurotransmitter systems in MDD have been widely reported. Emerging preclinical and clinical findings reveal that maladaptive glutamatergic neurotransmission might underlie the pathophysiology of MDD, thus revealing its critical role in the neurobiology of MDD and as the therapeutic target. Aiming beyond the monoaminergic hypothesis, studies of the neurobiological mechanisms underlying the stress-induced impairment of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-glutamatergic neurotransmission in the brain could provide novel insights for the development of a new generation of antidepressants without the detrimental side effects. Here, the authors reviewed the recent literature focusing on the role of AMPA-glutamatergic neurotransmission in stress-induced maladaptive responses in emotional and mood-associated brain regions, including the hippocampus, amygdala, prefrontal cortex, nucleus accumbens and periaqueductal gray.
RESUMEN
BACKGROUND: Enduring exposure to psychological stress is associated with an elevated risk of major depressive disorder (MDD). There is an enormous need to investigate the unexplored mechanisms of MDD. We examined whether pain-free stress alters synaptic transmission, causing depression-like behaviors in the ventrolateral periaqueductal gray (vlPAG), a brain stem nucleus that controls stress-related depression-like behavior. METHODS: In the current study, we studied neuronal changes in the vlPAG and behavioral transforms using electrophysiological recordings, behavioral tests, and pharmacological approaches. RESULTS: We found that chronic restraint stress (CRS) diminished glutamatergic transmission in the vlPAG, leading to maladaptive behavioral despair and anhedonia in mice demonstrated by the forced swimming test (FST), tail suspension test (TST) and female urine sniffing test (FUST). Moreover, CRS increased behavioral hypersensitivity shown by the von Frey test. Bath perfusion with the rapid-acting antidepressant (2R,6R)-hydroxynorketamine (HNK) increased both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in vlPAG neurons in the CRS and control groups. Functionally, (2R,6R)-HNK directly enhanced the action potential firing rate in vlPAG neurons. Behaviorally, intravlPAG microinjection of (2R,6R)-HNK alleviated chronic restraint stress-induced depression-like behaviors and behavioral hypersensitivity. CONCLUSIONS: These results demonstrate that psychological stress-elicited depression-like behavior is related to a remarkable decrease in glutamatergic transmission in the vlPAG. The maladaptive behaviors are attributed to hypoactivity of glutamatergic neurons in the vlPAG, and direct enhancement of glutamatergic neuronal activity in the vlPAG rescues depression-like behaviors. The present results prove that vlPAG is critical for controlling stress-induced depression-like behaviors through alteration of glutamatergic transmission.
Asunto(s)
Antidepresivos/farmacología , Depresión/prevención & control , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Sustancia Gris Periacueductal/crecimiento & desarrollo , Estrés Psicológico/complicaciones , Transmisión Sináptica , Animales , Depresión/etiología , Depresión/patología , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
By enhancing vagal activity, auricle transcutaneous electric nerve stimulation (TENS) is developed as a non-invasive therapy for heart failure. Nevertheless, though shoulder TENS used for treating adhesive capsulitis could affect vagal tone, its potential impact on heart functions remains unclear. In this study, electrocardiogram (ECG) and heart rate (HR) of subjects in response to sham, right-sided, or left-sided shoulder TENS (TENS-S, TENS-R, and TENS-L, respectively; 5 min) were recorded and analyzed. During the stimulation period, TENS-R constantly and TENS-L transiently decreased the HR of subjects; both TENS-R and TENS-L increased powers of the low- and high-frequency spectra. While TENS-R exhibiting no effect, TENS-L increased the ratio of low/high-frequency power spectrum indicating TENS-R decreased the HR through potentiating cardiac vagal tone. Collectively, these results suggest TENS could be an early and non-invasive therapy for heart failure patients before considering implant devices or devices are not feasible; moreover, therapists/physicians need to carefully monitor the potential adverse events during treatment for patient safety.Trial registration: The study protocol was registered in ClinicalTrials.gov (NCT03982472; 11/06/2019).
Asunto(s)
Frecuencia Cardíaca/fisiología , Hombro , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto , Electrocardiografía , Femenino , Humanos , Masculino , Estimulación Eléctrica Transcutánea del Nervio/efectos adversos , Estimulación del Nervio Vago/métodosRESUMEN
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Asunto(s)
Epigénesis Genética/fisiología , Proteínas F-Box/antagonistas & inhibidores , Neuralgia/terapia , Manejo del Dolor/métodos , Canales de Potasio , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Animales , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Femenino , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismoRESUMEN
Depression is a common mental disorder affecting more than 300 million people worldwide and is one of the leading causes of disability among all medical illnesses. The accumulation of preclinical data has fueled the revival of interest in targeting glutamatergic neurotransmission for the treatment of major depressive disorder. GLYX-13, a glutamatergic compound that acts as an N-methyl-d-aspartate (NMDA) modulator with glycine-site partial agonist properties, produces rapid and long-lasting antidepressant effects in both animal models and patients. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been fully characterized, especially in the midbrain ventrolateral periaqueductal gray (vlPAG), a brain stem area that controls stress-associated depression-like behavior. Here, we use a combination of electrophysiological recordings, behavioral tests, and pharmacological manipulations to study the antidepressant actions of GLYX-13 in the vlPAG. A single intravenous injection of a GLYX-13 rapidly mitigated footshock stress (FS)-induced depression-like behavior in rats. The FS-induced diminished glutamatergic transmission in the vlPAG was also reversed by a single GLYX-13 intravenous injection. Moreover, intra-vlPAG GLYX-13 microinjection produced a long-lasting antidepressant effect; however, this effect was prevented by the intra-vlPAG microinjection of tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, a selective mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and CNQX, an AMPA receptor antagonist. Additionally, a bath application of GLYX-13 enhanced glutamatergic transmission in vlPAG neurons; however, this enhancement effect was blocked by the co-application of ANA-12 and rapamycin. These results demonstrate that BDNF-TrkB-mTORC1 signaling in the vlPAG is required for the sustained antidepressant effects of GLYX-13.