Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE J Transl Eng Health Med ; 12: 468-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899145

RESUMEN

OBJECTIVE: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. METHODS: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red ([Formula: see text] nm) and near-infrared ([Formula: see text] nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. RESULTS: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. CONCLUSION: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement-This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.


Asunto(s)
Algoritmos , Saturación de Oxígeno , Piel , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Animales , Ratones , Piel/metabolismo , Piel/diagnóstico por imagen , Piel/irrigación sanguínea , Oxígeno/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Imágenes Hiperespectrales/métodos
2.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053827

RESUMEN

This work presents a fall detection system that is worn on the head, where the acceleration and posture are stable such that everyday movement can be identified without disturbing the wearer. Falling movements are recognized by comparing the acceleration and orientation of a wearer's head using prespecified thresholds. The proposed system consists of a triaxial accelerometer, gyroscope, and magnetometer; as such, a Madgwick's filter is adopted to improve the accuracy of the estimation of orientation. Moreover, with its integrated Wi-Fi module, the proposed system can notify an emergency contact in a timely manner to provide help for the falling person. Based on experimental results concerning falling movements and activities of daily living, the proposed system achieved a sensitivity of 96.67% in fall detection, with a specificity of 98.27%, and, therefore, is suitable for detecting falling movements in daily life.


Asunto(s)
Accidentes por Caídas , Actividades Cotidianas , Algoritmos , Dispositivos Electrónicos Vestibles , Aceleración , Humanos , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...