Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7969, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042869

RESUMEN

In the past decades, a band alignment theory has become a basis for designing different high-performance semiconductor devices, such as photocatalysis, photoelectrocatalysis, photoelectrostorage and third-generation photovoltaics. Recently, a faradaic junction model (coupled electron and ion transfer) has been proposed to explain charge transfer phenomena in these semiconductor heterojunctions. However, the classic band alignment theory cannot explain coupled electron and ion transfer processes because it only regulates electron transfer. Therefore, it is very significant to explore a suitable design concept for regulating coupled electron and ion transfer in order to improve the performance of semiconductor heterojunctions. Herein, we propose a potential window alignment theory for regulating ion transfer and remarkably improving the photoelectrocatalytic performance of a MoS2/Cd-Cu2ZnSnS4 heterojunction photocathode. Moreover, we find that a faradaic potential window, rather than the band position of the intermediate layer, is a criterion for identifying interface charge transfer direction. This finding can offer different perspectives for designing high-performance semiconductor heterojunctions with suitable potential windows for solar energy conversion and storage.

2.
ACS Omega ; 4(1): 1449-1459, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459412

RESUMEN

A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe2O3/SnO2-TiO2 electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm2 at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm2, AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe2O3 layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe2O3. These dopants diffuse from the overlayer into the α-Fe2O3 layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...