Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501027

RESUMEN

The clinical application of cisplatin, one of the most effective chemotherapeutic agents used to treat various cancers, has been limited by the risk of adverse effects, notably nephrotoxicity. Despite intensive research for decades, there are no effective approaches for alleviating cisplatin nephrotoxicity. This study aimed to investigate the protective effects and potential mechanisms of a Gynostemma pentaphyllum leaves hydrodistillate (GPHD) and its major component, damulin B, against cisplatin-induced nephrotoxicity in vitro and in vivo. A hydro-distillation method can extract large amounts of components within a short period of time using non-toxic, environmentally friendly solvent. We found that the levels of AMP-activated protein kinase α1 (AMPKα1), reactive oxygen species (ROS), and apoptosis were tightly associated with each other in HEK293 cells treated with cisplatin. We demonstrated that AMPKα1 acted as an anti-oxidant factor and that ROS generated by cisplatin suppressed the expression of AMPKα1 at the transcriptional level, thereby resulting in induction of apoptosis. Treatment with GPHD or damulin B effectively prevented cisplatin-induced apoptosis of HEK293 cells and cisplatin-induced acute kidney injury in mice by suppressing oxidative stress and maintaining AMPKα1 levels. Therefore, our study suggests that GPHD and damulin B may serve as prospective adjuvant agents against cisplatin-induced nephrotoxicity.


Asunto(s)
Cisplatino , Gynostemma , Humanos , Ratones , Animales , Cisplatino/toxicidad , Células HEK293 , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Riñón/metabolismo
2.
Biochem Biophys Res Commun ; 635: 37-45, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257190

RESUMEN

Doxorubicin is one of the most effective chemotherapeutic agents available for treating various cancers, including lung cancer-the leading cause of cancer death in both men and women. However, its clinical application has been impeded by severe adverse effects, notably cardiotoxicity. Development of cellular resistance to doxorubicin is another major obstacle that must be overcome for broader application of the drug. In the present study, we examined the therapeutic potential of beta-naphthoflavone (BNF), a synthetic derivative of a naturally occurring flavonoid, in combination with doxorubicin for the treatment of lung cancer. Among our novel observations were that BNF enhances the efficacy of doxorubicin by inducing doxorubicin accumulation, mitochondrial ROS generation, and JNK pathway signaling in lung cancer cells. These combined effects were also evident in many other cancer cell types. BNF further exhibited synergistic induction of apoptosis in lung cancer cells when combined with several other cancer drugs, including irinotecan, cisplatin, and 5-fluorouracil. Our results suggest that BNF can be developed as a promising adjuvant agent for enhancing the efficacy of doxorubicin.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Femenino , Sistema de Señalización de MAP Quinasas , Especies Reactivas de Oxígeno/metabolismo , beta-naftoflavona/farmacología , Apoptosis , Doxorrubicina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral
3.
Exp Mol Med ; 53(9): 1413-1422, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34584194

RESUMEN

Doxorubicin is one of the most effective agents used to treat various cancers, including breast cancer, but its usage is limited by the risk of adverse effects, including cardiotoxicity. Melatonin, a natural hormone that functions as a major regulator of circadian rhythms, has been considered a supplemental component for doxorubicin due to its potential to improve its effectiveness. However, the mechanisms and biological targets of the combination of melatonin and doxorubicin with respect to cancer cell death are not well understood. In the present study, we found that melatonin synergized with doxorubicin to induce apoptosis of breast cancer cells by decreasing the expression of AMP-activated protein kinase α1 (AMPK α1), which acts as a critical survival factor for cancer cells. This cotreatment-induced reduction in AMPKα1 expression occurred at the transcriptional level via an autophagy-dependent mechanism. The synergistic effects of the combined treatment were evident in many other cancer cell lines, and melatonin was also highly effective in inducing cancer death when combined with other cancer drugs, including cisplatin, 5-fluorouracil, irinotecan, and sorafenib. AMPKα1 expression was decreased in all of these cases, suggesting that reducing AMPKα1 can be considered an effective method to increase the sensitivity of cancer cells to doxorubicin treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Humanos
4.
Exp Mol Med ; 52(12): 2055-2068, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33339952

RESUMEN

The clinical application of doxorubicin, one of the most effective anticancer drugs, has been limited due to its adverse effects, including cardiotoxicity. One of the hallmarks of doxorubicin-induced cytotoxicity is mitochondrial dysfunction. Despite intensive research over recent decades, there are no effective approaches for alleviating doxorubicin-induced cytotoxicity. Melatonin, a natural hormone that is primarily secreted by the pineal gland, is emerging as a promising adjuvant that protects against doxorubicin-induced cytotoxicity owing to its pharmaceutical effect of preserving mitochondrial integrity. However, the underlying mechanisms are far from completely understood. Here, we provide novel evidence that treatment of H9c2 cardiomyoblasts with doxorubicin strongly induced AMP-activated protein kinase α2 (AMPKα2), which translocated to mitochondria and interfered with their function and integrity, ultimately leading to cellular apoptosis. These phenomena were significantly blocked by melatonin treatment. The levels of AMPKα2 in murine hearts were tightly associated with cardiotoxicity in the context of doxorubicin and melatonin treatment. Therefore, our study suggests that the maintenance of mitochondrial integrity is a key factor in reducing doxorubicin-induced cytotoxicity and indicates that AMPKα2 may serve as a novel target in the design of cytoprotective combination therapies that include doxorubicin.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Mitocondrias/genética , Modelos Biológicos , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno
5.
Mar Drugs ; 18(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962063

RESUMEN

Melanin protects skin from ultraviolet radiation, toxic drugs, and chemicals. Its synthesis is sophisticatedly regulated by multiple mechanisms, including transcriptional and enzymatic controls. However, uncontrolled excessive production of melanin can cause serious dermatological disorders, such as freckles, melasma, solar lentigo, and cancer. Moreover, melanogenesis disorders are also linked to neurodegenerative diseases. Therefore, there is a huge demand for safer and more potent inhibitors of melanogenesis. In the present study, we report novel inhibitory effects of Jeju magma-seawater (JMS) on melanogenesis induced by α-melanocyte stimulating hormone (α-MSH) in B16F10 melanoma cells. JMS is the abundant underground seawater found in Jeju Island, a volcanic island of Korea. Research into the physiological effects of JMS is rapidly increasing due to its high contents of various minerals that are essential to human health. However, little is known about the effects of JMS on melanogenesis. Here, we demonstrate that JMS safely and effectively inhibits α-MSH-induced melanogenesis via the CaMKKß (calcium/calmodulin-dependent protein kinase ß)-AMPK (5' adenosine monophosphate-activated protein kinase) signaling pathway. We further demonstrate that AMPK inhibits the signaling pathways of protein kinase A and MAPKs (mitogen-activated protein kinase), which are critical for melanogenesis-related gene expression. Our results highlight the potential of JMS as a novel therapeutic agent for ameliorating skin pigmentation-related disorders.


Asunto(s)
Melaninas/metabolismo , Melanoma Experimental/metabolismo , Agua de Mar/química , Piel/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , República de Corea , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Erupciones Volcánicas , alfa-MSH/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...