Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Open Med (Wars) ; 19(1): 20230851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584825

RESUMEN

The role of hepatic venous pressure gradient (HVPG) measurement in risk stratification before liver resection is an ongoing area of debate. This study examines the impact of preoperative HVPG levels on overall survival (OS)/time to recurrence (TTR) and postoperative complications after hepatic resection of hepatocellular carcinoma (HCC). Thirty-eight HCC patients undergoing HVPG measurement before liver resection at Cambridge University Hospitals NHS Foundation Trust between January 2014 and April 2022 were retrospectively analysed. Statistical analysis comprised univariable/multivariable Cox/logistic regression to identify risk factors of reduced OS/TTR or 90-day post-resection complications and Kaplan-Meier estimator, log-rank, chi-squared, Fisher's exact, and Mann-Whitney U test, or Student's t-test for survival/subgroup analysis. The median HPVG was 6 (range: 0-14) mmHg. The HVPG was an independent risk factor for poorer TTR in the overall cohort (cut-off: ≥7.5 mmHg (17.18/43.81 months; P = 0.009)). In the subgroup analysis of cirrhotic patients (N = 29 (76%)), HVPG was additionally an independent risk factor for lower OS (cut-off: ≥8.5 mmHg [44.39/76.84 months; P = 0.012]). The HVPG had no impact on OS/TTR in non-cirrhotic patients (N = 9 (24%)), nor was it associated with postoperative complications in any cohort. In conclusion, preoperative HVPG levels are useful predictors for TTR and OS in cirrhotic HCC patients undergoing hepatic resection.

2.
iScience ; 26(10): 107966, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810232

RESUMEN

Liver sinusoidal endothelial cells (LSEC) undergo significant phenotypic change in chronic liver disease (CLD), and yet the factors that drive this process and the impact on their function as a vascular barrier and gatekeeper for immune cell recruitment are poorly understood. Plasmalemma-vesicle-associated protein (PLVAP) has been characterized as a marker of LSEC in CLD; notably we found that PLVAP upregulation strongly correlated with markers of tissue senescence. Furthermore, exposure of human LSEC to the senescence-associated secretory phenotype (SASP) led to a significant upregulation of PLVAP. Flow-based assays demonstrated that SASP-driven leukocyte recruitment was characterized by paracellular transmigration of monocytes while the majority of lymphocytes migrated transcellularly. Knockdown studies confirmed that PLVAP selectively supported monocyte transmigration mediated through PLVAP's impact on LSEC permeability by regulating phospho-VE-cadherin expression and endothelial gap formation. PLVAP may therefore represent an endothelial target that selectively shapes the senescence-mediated immune microenvironment in liver disease.

4.
J Hepatol ; 79(2): 417-432, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37088309

RESUMEN

BACKGROUND & AIMS: While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation. METHODS: Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry. We exploit next-generation mitochondrial sequencing to determine hepatocyte clonal expansion dynamics across spatially distinct areas of laser-captured, microdissected, clones, in tandem with computational modelling in morphologically normal human liver. RESULTS: Hepatocyte clones and rare SOX9+ hepatocyte progenitors commonly associate with portal tracts and we present evidence that clones can lineage-trace with cholangiocytes, indicating the presence of a bipotential common ancestor at this niche. Within clones, we demonstrate methylation CpG sequence diversity patterns indicative of periportal not pericentral ancestral origins, indicating a portal to central vein expansion trajectory. Using spatial analysis of mitochondrial DNA variants by next-generation sequencing coupled with mathematical modelling and Bayesian inference across the portal-central axis, we demonstrate that patterns of mitochondrial DNA variants reveal large numbers of spatially restricted mutations in conjunction with limited numbers of clonal mutations. CONCLUSIONS: These datasets support the existence of a periportal progenitor niche and indicate that clonal patches exhibit punctuated but slow growth, then quiesce, likely due to acute environmental stimuli. These findings crucially contribute to our understanding of hepatocyte dynamics in the normal human liver. IMPACT AND IMPLICATIONS: The liver is mainly composed of hepatocytes, but we know little regarding the source of these cells or how they multiply over time within the disease-free human liver. In this study, we determine a source of new hepatocytes by combining many different lab-based methods and computational predictions to show that hepatocytes share a common cell of origin with bile ducts. Both our experimental and computational data also demonstrate hepatocyte clones are likely to expand in slow waves across the liver in a specific trajectory, but often lie dormant for many years. These data show for the first time the expansion dynamics of hepatocytes in normal liver and their cell of origin enabling the accurate measurment of changes to their dynamics that may lead to liver disease. These findings are important for researchers determining cancer risk in human liver.


Asunto(s)
Hepatopatías , Nicho de Células Madre , Humanos , Teorema de Bayes , Diferenciación Celular , Hepatocitos/fisiología , Hígado , ADN Mitocondrial
5.
J Clin Transl Hepatol ; 11(3): 638-648, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36969895

RESUMEN

Background and Aims: The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods: To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results: A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions: A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.

6.
J Hepatol ; 78(5): 898-900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36781086
7.
Genome Med ; 14(1): 67, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739588

RESUMEN

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS: Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS: Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS: Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Acetilcoenzima A/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa/efectos adversos , Epigenoma , Fructosa/efectos adversos , Fructosa/metabolismo , Histonas/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética
8.
Genes Dev ; 36(9-10): 533-549, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618311

RESUMEN

Senescence is a stress-responsive tumor suppressor mechanism associated with expression of the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells trigger their own immune-mediated elimination, which if evaded leads to tumorigenesis. Senescent parenchymal cells are separated from circulating immunocytes by the endothelium, which is targeted by microenvironmental signaling. Here we show that SASP induces endothelial cell NF-κB activity and that SASP-induced endothelial expression of the canonical NF-κB component Rela underpins senescence surveillance. Using human liver sinusoidal endothelial cells (LSECs), we show that SASP-induced endothelial NF-κB activity regulates a conserved transcriptional program supporting immunocyte recruitment. Furthermore, oncogenic hepatocyte senescence drives murine LSEC NF-κB activity in vivo. Critically, we show two distinct endothelial pathways in senescence surveillance. First, endothelial-specific loss of Rela prevents development of Stat1-expressing CD4+ T lymphocytes. Second, the SASP up-regulates ICOSLG on LSECs, with the ICOS-ICOSLG axis contributing to senescence cell clearance. Our results show that the endothelium is a nonautonomous SASP target and an organizing center for immune-mediated senescence surveillance.


Asunto(s)
Senescencia Celular , FN-kappa B , Animales , Senescencia Celular/genética , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ratones , FN-kappa B/metabolismo , Fenotipo
9.
Liver Int ; 42(8): 1823-1835, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474605

RESUMEN

BACKGROUND: Understanding the genetics of liver disease has the potential to facilitate clinical risk stratification. We recently identified acquired somatic mutations in six genes and one lncRNA in pre-existing fatty liver disease. We hypothesised that germline variation in these genes might be associated with the risk of developing steatosis and contribute to the prediction of disease severity. METHODS: Genome-wide association study (GWAS) summary statistics were extracted from seven studies (>1.7 million participants) for variants near ACVR2A, ALB, CIDEB, FOXO1, GPAM, NEAT1 and TNRC6B for: aminotransferases, liver fat, HbA1c, diagnosis of NAFLD, ARLD and cirrhosis. Findings were replicated using GWAS data from multiple independent cohorts. A phenome-wide association study was performed to examine for related metabolic traits, using both common and rare variants, including gene-burden testing. RESULTS: There was no evidence of association between rare germline variants or SNPs near five genes (ACVR2A, ALB, CIDEB, FOXO1 and TNRC6B) and risk or severity of liver disease. Variants in GPAM (proxies for p.Ile43Val) were associated with liver fat (p = 3.6 × 10-13 ), ALT (p = 2.8 × 10-39 ) and serum lipid concentrations. Variants in NEAT1 demonstrated borderline significant associations with ALT (p = 1.9 × 10-11 ) and HbA1c, but not with liver fat, as well as influencing waist-to-hip ratio, adjusted for BMI. CONCLUSIONS: Despite the acquisition of somatic mutations at these loci during progressive fatty liver disease, we did not find associations between germline variation and markers of liver disease, except in GPAM. In the future, larger sample sizes may identify associations. Currently, germline polygenic risk scores will not capture data from genes affected by somatic mutations.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple , Pronóstico
10.
Nature ; 598(7881): 473-478, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646017

RESUMEN

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Asunto(s)
Hepatopatías/genética , Hepatopatías/metabolismo , Hígado/metabolismo , Mutación/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Enfermedad Crónica , Estudios de Cohortes , Ácidos Grasos no Esterificados/metabolismo , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Resistencia a la Insulina , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
11.
J Hepatol ; 75(4): 879-887, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34052255

RESUMEN

BACKGROUND & AIMS: Sorafenib has been the standard of care for patients with advanced hepatocellular carcinoma and although immunotherapeutic approaches are now challenging this position, it retains an advantage in HCV-seropositive patients. We aimed to quantify the rate of tumour progression in patients receiving sorafenib and relate this figure to survival, both overall, and according to viral status. METHODS: Using serial data from an international clinical trial we applied a joint model to combine survival and progression over time in order to estimate the rate of tumour growth as assessed by tumour burden and serum alpha-fetoprotein, and the impact of treatment on liver function. RESULTS: High tumour burden at baseline was associated with an increased risk of death. In patients still alive at the end of the study, the progression in relation to tumour burden was very low compared to those who died within the study. Overall, the change in mean tumour burden was 0.12 mm per day or an absolute growth rate of 3.6 mm/month. Median doubling time was 665 days. For those who progressed above 0.12 mm per day or the 12% rate, median survival was 234 days compared to 384 days if the rate was below 12%. Tumour growth rate and serum alpha-fetoprotein rise were significantly lower in those who were HCV seropositive as was the rate of decline in liver function. These results were replicated in 2 independent patient groups. CONCLUSION: Our analysis suggests that sorafenib treatment is associated with improved survival in patients with advanced hepatocellular carcinoma mainly by decreasing the rate of tumour growth and liver function deterioration among patients with HCV infection. LAY SUMMARY: Among patients receiving sorafenib for advanced hepatocellular carcinoma the rate of tumour growth (as assessed by changes in tumour size and the biomarker alpha-fetoprotein) and the deterioration of liver function is less in those who have the hepatitis C virus, than in those who do not.


Asunto(s)
Crecimiento y Desarrollo/efectos de los fármacos , Hepatitis C/complicaciones , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/farmacología , Adulto , Anciano , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/fisiopatología , Femenino , Hepatitis C/tratamiento farmacológico , Humanos , Hígado/patología , Pruebas de Función Hepática/métodos , Pruebas de Función Hepática/estadística & datos numéricos , Neoplasias Hepáticas/fisiopatología , Masculino , Persona de Mediana Edad , Sorafenib/uso terapéutico
12.
Sci Rep ; 11(1): 8262, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859265

RESUMEN

Radiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria and further validation of feature robustness with respect to imaging acquisition parameters. In this paper, the robustness of radiomic features extracted from computed tomography (CT) images is evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels and correcting for the dependency on volume. With the optimal values and corrections, feature values are compared across thicknesses to identify reproducible features. Normalisation using muscle regions is also described as an alternative approach. With either method, a large fraction of features (75-90%) was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using variable slice thickness.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Hígado/diagnóstico por imagen , Músculos/diagnóstico por imagen , Radiometría/métodos , Tomografía Computarizada por Rayos X/métodos , Carcinoma Hepatocelular/patología , Humanos , Hígado/patología , Músculos/patología , Estudios Retrospectivos
13.
Cell Rep ; 34(11): 108860, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730589

RESUMEN

Senescent cells trigger their own immune-mediated destruction, termed senescence surveillance. This is dependent on the inflammatory senescence-associated secretory phenotype (SASP), which includes COX2, an enzyme with complex roles in cancer. The role COX2 plays during senescence surveillance is unknown. Here, we show that during RAS-induced senescence (RIS), COX2 is a critical regulator of SASP composition and senescence surveillance in vivo. COX2 regulates the expression of multiple inflammatory SASP components through an autocrine feedback loop involving its downstream product, prostaglandin E2 (PGE2), binding to EP4. During in vivo hepatocyte RIS, Cox2 is critical to tumor suppression, Cxcl1 expression, and immune-mediated senescence surveillance, partially through PGE2. Loss of Cox2 in RIS dysregulates the intrahepatic immune microenvironment, with enrichment of immunosuppressive immature myeloid cells and CD4+ regulatory T lymphocytes. Therefore, COX2 and PGE2 play a critical role in senescence, shaping SASP composition, promoting senescence surveillance and tumor suppression in the earliest stages of tumorigenesis.


Asunto(s)
Senescencia Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Secretoma , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Femenino , Fibroblastos , Humanos , Ratones Endogámicos C57BL , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Microambiente Tumoral/inmunología , Regulación hacia Arriba
14.
Hepatology ; 73(3): 1028-1044, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32460431

RESUMEN

BACKGROUND AND AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo , Animales , Perfilación de la Expresión Génica , Hepatocitos/fisiología , Humanos , Lipidómica , Lipogénesis , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL
15.
Clin Transl Gastroenterol ; 11(9): e00239, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33094960

RESUMEN

INTRODUCTION: Liver cirrhosis and its complication - hepatocellular carcinoma (HCC) - have been associated with increased exhaled limonene. It is currently unclear whether this increase is more strongly associated with the presence of HCC or with the severity of liver dysfunction. METHODS: We compared the exhaled breath of 40 controls, 32 cirrhotic patients, and 12 cirrhotic patients with HCC using the Breath Biopsy platform. Breath samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. Limonene levels were compared between the groups and correlated to bilirubin, albumin, prothrombin time international normalized ratio, and alanine aminotransferase. RESULTS: Breath limonene concentration was significantly elevated in subjects with cirrhosis-induced HCC (M: 82.1 ng/L, interquartile range [IQR]: 16.33-199.32 ng/L) and cirrhosis (M: 32.6 ng/L, IQR: 6.55-123.07 ng/L) compared with controls (M: 6.2 ng/L, IQR: 2.62-9.57 ng/L) (P value = 0.0005 and 0.0001, respectively) with no significant difference between 2 diseased groups (P value = 0.37). Levels of exhaled limonene correlated with serum bilirubin (R = 0.25, P value = 0.0016, r = 0.51), albumin (R = 0.58, P value = 5.3e-8, r = -0.76), and international normalized ratio (R = 0.29, P value = 0.0003, r = 0.51), but not with alanine aminotransferase (R = 0.01, P value = 0.36, r = 0.19). DISCUSSION: Exhaled limonene levels are primarily affected by the presence of cirrhosis through reduced liver functional capacity, as indicated by limonene correlation with blood metrics of impaired hepatic clearance and protein synthesis capacity, without further alterations observed in subjects with HCC. This suggests that exhaled limonene is a potential non-invasive marker of liver metabolic capacity (see Visual abstract, Supplementary Digital Content 1, http://links.lww.com/CTG/A388).


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Limoneno/análisis , Cirrosis Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Pruebas Respiratorias , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/fisiopatología , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Hígado/patología , Hígado/fisiopatología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Pruebas de Función Hepática/métodos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Índice de Severidad de la Enfermedad
16.
Nature ; 574(7779): 538-542, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645727

RESUMEN

The most common causes of chronic liver disease are excess alcohol intake, viral hepatitis and non-alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic inflammation to cirrhosis, liver failure or hepatocellular carcinoma (HCC). The genome of HCC exhibits diverse mutational signatures, resulting in recurrent mutations across more than 30 cancer genes1-7. Stem cells from normal livers have a low mutational burden and limited diversity of signatures8, which suggests that the complexity of HCC arises during the progression to chronic liver disease and subsequent malignant transformation. Here, by sequencing whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers, we show that cirrhotic liver has a higher mutational burden than normal liver. Although rare in normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. Driver mutations, such as point mutations and structural variants, affected 1-5% of clones. Clonal expansions of millimetres in diameter occurred in cirrhosis, with clones sequestered by the bands of fibrosis that surround regenerative nodules. Some mutational signatures were universal and equally active in both non-malignant hepatocytes and HCCs; some were substantially more active in HCCs than chronic liver disease; and others-arising from exogenous exposures-were present in a subset of patients. The activity of exogenous signatures between adjacent cirrhotic nodules varied by up to tenfold within each patient, as a result of clone-specific and microenvironmental forces. Synchronous HCCs exhibited the same mutational signatures as background cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, regeneration and clonal structure of liver tissue as it progresses from health to disease.


Asunto(s)
Células Clonales/citología , Células Clonales/patología , Fibrosis/genética , Fibrosis/patología , Hígado/citología , Hígado/metabolismo , Mutación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Filogenia , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología
17.
Adv Exp Med Biol ; 1066: 299-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30030833

RESUMEN

Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Proteínas de Drosophila/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Envejecimiento/genética , Envejecimiento/patología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Neoplasias/genética , Neoplasias/patología , Receptores Notch/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Nat Commun ; 9(1): 1840, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743479

RESUMEN

Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.


Asunto(s)
Senescencia Celular , Receptor Notch1/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Proteína Jagged-1 , Receptor Notch1/genética , Transducción de Señal
19.
Trends Cell Biol ; 27(11): 820-832, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28822679

RESUMEN

Cellular senescence is an autonomous tumor suppressor mechanism leading to stable cell cycle arrest. Senescent cells are highly secretory, driving a range of different functions through the senescence-associated secretory phenotype (SASP). Recent findings have suggested that the composition of the SASP is dynamically and spatially regulated and that the changing composition of the SASP can determine the beneficial and detrimental aspects of the senescence program, tipping the balance to either an immunosuppressive/profibrotic environment or proinflammatory/fibrolytic state. Here, we discuss the current understanding of the temporal and spatial regulation of the SASP and the novel finding of NOTCH signaling as a regulator of SASP composition.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Senescencia Celular/fisiología , Vías Secretoras/fisiología , Transducción de Señal/fisiología , Animales , Puntos de Control del Ciclo Celular/genética , Senescencia Celular/genética , Daño del ADN , Humanos , Modelos Biológicos , Fenotipo , Vías Secretoras/genética , Transducción de Señal/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...