RESUMEN
The purpose of this study was to update the existing Cancer Potency Database (CPDB) in order to support the development of a dataset of compounds, with associated points of departure (PoDs), to enable a review and update of currently applied values for the Threshold of Toxicological Concern (TTC) for cancer endpoints. This update of the current CPDB, last reviewed in 2012, includes the addition of new data (44 compounds and 158 studies leading to additional 359 dose-response curves). Strict inclusion criteria were established and applied to select compounds and studies with relevant cancer potency data. PoDs were calculated from dose-response modeling, including the benchmark dose (BMD) and the lower 90% confidence limits (BMDL) at a specified benchmark response (BMR) of 10%. The updated full CPDB database resulted in a total of 421 chemicals which had dose-response data that could be used to calculate PoDs. This candidate dataset for cancer TTC is provided in a transparent and adaptable format for further analysis of TTC to derive cancer potency thresholds.
Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Bases de Datos Factuales , Medición de RiesgoRESUMEN
Read-across is an in silico method applied in chemical risk assessment for data-poor chemicals. The read-across outcomes for repeated-dose toxicity end points include the no-observed-adverse-effect level (NOAEL) and estimated uncertainty for a particular category of effects. We have previously developed a new paradigm for estimating NOAELs based on chemoinformatics analysis and experimental study qualities from selected analogues, not relying on quantitative structure-activity relationships (QSARs) or rule-based SAR systems, which are not well-suited to end points for which the underpinning data are weakly grounded in specific chemical-biological interactions. The central hypothesis of this approach is that similar compounds have similar toxicity profiles and, hence, similar NOAEL values. Analogue quality (AQ) quantifies the suitability of an analogue candidate for reading across to the target by considering similarity from structure, physicochemical, ADME (absorption, distribution, metabolism, excretion), and biological perspectives. Biological similarity is based on experimental data; assay vectors derived from aggregations of ToxCast/Tox21 data are used to derive machine learning (ML) hybrid rules that serve as biological fingerprints to capture target-analogue similarity relevant to specific effects of interest, for example, hormone receptors (ER/AR/THR). Once one or more analogues have been qualified for read-across, a decision theory approach is used to estimate confidence bounds for the NOAEL of the target. The confidence interval is dramatically narrowed when analogues are constrained to biologically related profiles. Although this read-across process works well for a single target with several analogues, it can become unmanageable when, for example, screening multiple targets (e.g., virtual screening library) or handling a parent compound having numerous metabolites. To this end, we have established a digitalized framework to enable the assessment of a large number of substances, while still allowing for human decisions for filtering and prioritization. This workflow was developed and validated through a use case of a large set of bisphenols and their metabolites.
Asunto(s)
Inteligencia Artificial , Lectura , Humanos , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa , Medición de RiesgoRESUMEN
California's Office of Environmental Health Hazard Assessment was tasked with conducting risk assessments for United States Food and Drug Administration-approved food dyes relative to neurobehavioral concerns. The purpose of this assessment was to evaluate the evidence for neurodevelopment effects based on three streams of evidence: 1) studies identified by OEHHA for consideration in a quantitative risk assessment; 2) studies relevant to understanding mechanisms of neurobehavioral effects; 3) an in silico assessment of the bioavailability of USFDA-approved food dyes. The results indicate a lack of adequate or consistent evidence of neurological effects, supported by a lack of bioavailability and brain penetration predicted by the in silico assessment. Further, the mechanistic evidence supports a lack of activity from in vitro neurotransmitter assays, and a lack of evidence to support molecular initiating events or key events in adverse outcome pathways associated with neurodevelopmental effects, supporting a lack of biological plausibility for neurobehavioral effects following food exposures to colors. These conclusions are consistent with other authoritative bodies, such as JECFA and EFSA, that have determined (i) other effects are more appropriate for estimating acceptable daily intakes and (ii) evidence from the neurobehavioral studies lack the strength to be relied upon for quantitative risk assessment.
Asunto(s)
Conducta Animal/efectos de los fármacos , Aprobación de Drogas/legislación & jurisprudencia , Colorantes de Alimentos/efectos adversos , Sistema Nervioso/efectos de los fármacos , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Colorantes de Alimentos/farmacocinética , Humanos , Nivel sin Efectos Adversos Observados , Estados Unidos , United States Food and Drug AdministrationRESUMEN
Drug-induced liver injury (DILI) remains a challenge when translating knowledge from the preclinical stage to human use cases. Attempts to model human DILI directly based on the information from drug labels have had some success; however, the approach falls short of providing insights or addressing uncertainty due to the difficulty of decoupling the idiosyncratic nature of human DILI outcomes. Our approach in this comparative analysis is to leverage existing preclinical and clinical data as well as information on metabolism to better translate mammalian to human DILI. The human DILI knowledge base from the United States Food and Drug Administration (U.S. FDA) National Center for Toxicology Research contains 1036 pharmaceuticals from diverse therapeutic categories. A human DILI training set of 305 oral marketed drugs was prepared and a binary classification scheme applied. The second knowledge base consists of mammalian repeated dose toxicity with liver toxicity data from various regulatory sources. Within this knowledge base, we identified 278 pharmaceuticals containing 198 marketed or withdrawn oral drugs with data from the U.S. FDA new drug application and 98 active pharmaceutical ingredients from ToxCast. From this collection, a set of 225 oral drugs was prepared as the mammalian hepatotoxicity training set with particular end points of pathology findings in the liver and bile duct. Both human and mammalian data sets were processed using various learning algorithms, including artificial intelligence approaches. The external validations for both models were comparable to the training statistics. These data sets were also used to extract species-differentiating chemotypes that differentiate DILI effects on humans from mammals. A systematic workflow was devised to predict human DILI and provide mechanistic insights. For a given query molecule, both human and mammalian models are run. If the predictions are discordant, both metabolites and parents are investigated for quantitative structure-activity relationship and species-differentiating chemotypes. Their results are combined using the Dempster-Shafer decision theory to yield a final outcome prediction for human DILI with estimated uncertainty. Finally, these tools are implementable within an in silico platform for systematic evaluation.