Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20242024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803272

RESUMEN

The Protein Data Bank (PDB) is the global repository for public-domain experimentally determined 3D biomolecular structural information. The archival nature of the PDB presents certain challenges pertaining to updating or adding associated annotations from trusted external biodata resources. While each Worldwide PDB (wwPDB) partner has made best efforts to provide up-to-date external annotations, accessing and integrating information from disparate wwPDB data centers can be an involved process. To address this issue, the wwPDB has established the PDB Next Generation (or NextGen) Archive, developed to centralize and streamline access to enriched structural annotations from wwPDB partners and trusted external sources. At present, the NextGen Archive provides mappings between experimentally determined 3D structures of proteins and UniProt amino acid sequences, domain annotations from Pfam, SCOP2 and CATH databases and intra-molecular connectivity information. Since launch, the PDB NextGen Archive has seen substantial user engagement with over 3.5 million data file downloads, ensuring researchers have access to accurate, up-to-date and easily accessible structural annotations. Database URL: http://www.wwpdb.org/ftp/pdb-nextgen-archive-site.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Proteínas/química
2.
J Mol Biol ; : 168546, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508301

RESUMEN

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

3.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38490206

RESUMEN

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Programas Informáticos
4.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358351

RESUMEN

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Asunto(s)
Curaduría de Datos , Microscopía por Crioelectrón/métodos
5.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328042

RESUMEN

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

6.
Anal Chem ; 96(5): 1843-1851, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38273718

RESUMEN

Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Programas Informáticos , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...