Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33574059

RESUMEN

Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.


Asunto(s)
Adaptación Fisiológica , Encéfalo/crecimiento & desarrollo , Cebus/genética , Genoma , Longevidad/genética , Animales , Evolución Molecular , Citometría de Flujo/métodos , Bosques , Genómica/métodos
2.
Proc Biol Sci ; 281(1789): 20140930, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24990677

RESUMEN

While gene flow between distantly related populations is increasingly recognized as a potentially important source of adaptive genetic variation for humans, fully characterized examples are rare. In addition, the role that natural selection for resistance to vivax malaria may have played in the extreme distribution of the protective Duffy-null allele, which is nearly completely fixed in mainland sub-Saharan Africa and absent elsewhere, is controversial. We address both these issues by investigating the evolution of the Duffy-null allele in the Malagasy, a recently admixed population with major ancestry components from both East Asia and mainland sub-Saharan Africa. We used genome-wide genetic data and extensive computer simulations to show that the high frequency of the Duffy-null allele in Madagascar can only be explained in the absence of positive natural selection under extreme demographic scenarios involving high genetic drift. However, the observed genomic single nucleotide polymorphism diversity in the Malagasy is incompatible with such extreme demographic scenarios, indicating that positive selection for the Duffy-null allele best explains the high frequency of the allele in Madagascar. We estimate the selection coefficient to be 0.066. Because vivax malaria is endemic to Madagascar, this result supports the hypothesis that malaria resistance drove fixation of the Duffy-null allele in mainland sub-Saharan Africa.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy/genética , Frecuencia de los Genes , Receptores de Superficie Celular/genética , Selección Genética , África del Sur del Sahara , Pueblo Asiatico/genética , Población Negra/genética , Simulación por Computador , Flujo Genético , Genética de Población , Humanos , Madagascar , Modelos Genéticos , Polimorfismo de Nucleótido Simple
3.
PLoS Genet ; 10(6): e1004393, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24921250

RESUMEN

Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural.


Asunto(s)
Población Negra/genética , ADN Mitocondrial/genética , Migración Humana , Lactasa/genética , África Oriental , Alelos , Arqueología , Evolución Biológica , Etnicidad/genética , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Yemen
4.
Mol Phylogenet Evol ; 75: 165-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24583291

RESUMEN

The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Filogenia , Primates/clasificación , Animales , Teorema de Bayes , Fósiles , Funciones de Verosimilitud , Mamíferos/genética , Modelos Genéticos , Primates/genética , Análisis de Secuencia de ADN
6.
Curr Biol ; 20(12): R517-9, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20620905

RESUMEN

Analysis of the Neandertal genome indicates gene flow between Neandertals and modern humans of Eurasia but not Africa. This surprising result is difficult to reconcile with current models of human origins and might have to do with insufficient African sampling.


Asunto(s)
Variación Genética , Genoma , Hominidae/genética , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 106(14): 5534-9, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19321426

RESUMEN

The earliest Neotropical primate fossils complete enough for taxonomic assessment, Dolichocebus, Tremacebus, and Chilecebus, date to approximately 20 Ma. These have been interpreted as either closely related to extant forms or as extinct stem lineages. The former hypothesis of morphological stasis requires most living platyrrhine genera to have diverged before 20 Ma. To test this hypothesis, we collected new complete mitochondrial genomes from Aotus lemurinus, Saimiri sciureus, Saguinus oedipus, Ateles belzebuth, and Callicebus donacophilus. We combined these with published sequences from Cebus albifrons and other primates to infer the mitochondrial phylogeny. We found support for a cebid/atelid clade to the exclusion of the pitheciids. Then, using Bayesian methods and well-supported fossil calibration constraints, we estimated that the platyrrhine most recent common ancestor (MRCA) dates to 19.5 Ma, with all major lineages diverging by 14.3 Ma. Next, we estimated catarrhine divergence dates on the basis of platyrrhine divergence scenarios and found that only a platyrrhine MRCA less than 21 Ma is concordant with the catarrhine fossil record. Finally, we calculated that 33% more change in the rate of evolution is required for platyrrhine divergences consistent with the morphologic stasis hypothesis than for a more recent radiation. We conclude that Dolichocebus, Tremacebus, and Chilecebus are likely too old to be crown platyrrhines, suggesting they were part of an extinct early radiation. We note that the crown platyrrhine radiation was concomitant with the radiation of 2 South American xenarthran lineages and follows a global temperature peak and tectonic activity in the Andes.


Asunto(s)
Especiación Genética , Filogenia , Primates/genética , Animales , Teorema de Bayes , Genoma Mitocondrial , Geografía , Datos de Secuencia Molecular , América del Sur , Temperatura
8.
Genome Biol ; 9(2): 206, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18304371

RESUMEN

The relationship between Neanderthals and modern humans is contentious, but recent advances in Neanderthal genomics have shed new light on their evolutionary history. Here we review the available evidence and find no indication of any Neanderthal contribution to modern genetic diversity.


Asunto(s)
Evolución Biológica , Variación Genética , Hominidae/genética , Filogenia , Animales , ADN Mitocondrial/genética , Evolución Molecular , Humanos , Análisis de Secuencia de ADN
9.
PLoS Genet ; 4(1): e19, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18208337

RESUMEN

Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small "Austronesian" genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.


Asunto(s)
Eliminación de Gen , Marcadores Genéticos , Genética de Población , Geografía , Repeticiones de Microsatélite/genética , Mutagénesis Insercional , Nativos de Hawái y Otras Islas del Pacífico/genética , Alelos , Teorema de Bayes , ADN Mitocondrial/genética , Emigración e Inmigración , Frecuencia de los Genes , Flujo Genético , Ligamiento Genético , Variación Genética , Genoma Humano , Haplotipos , Heterocigoto , Humanos , Lenguaje , Modelos Genéticos , Filogenia , Polimorfismo Genético
10.
PLoS One ; 2(2): e248, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-17327912

RESUMEN

Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.


Asunto(s)
Población Negra/genética , ADN Mitocondrial/genética , Variación Genética , Secuencia de Bases , Emigración e Inmigración , Etnicidad/genética , Efecto Fundador , Flujo Génico , Haplotipos/genética , Humanos , Melanesia , Datos de Secuencia Molecular , Nativos de Hawái y Otras Islas del Pacífico/genética , Oceanía/etnología , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
11.
Proc Natl Acad Sci U S A ; 102(37): 13034-9, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16150714

RESUMEN

Based on whole mtDNA sequencing of 14 samples from Northern Island Melanesia, we characterize three formerly unresolved branches of macrohaplogroup M that we call haplogroups M27, M28, and M29. Our 1,399 mtDNA control region sequences and a literature search indicate these haplogroups have extremely limited geographical distributions. Their coding region variation suggests diversification times older than the estimated date for the initial settlement of Northern Island Melanesia. This finding indicates that they were among the earliest mtDNA variants to appear in these islands or in the ancient continent of Sahul. These haplogroups from Northern Island Melanesia extend the existing schema for macrohaplogroup M, with many independent branches distributed across Asia, East Africa, Australia, and Near Oceania.


Asunto(s)
ADN Mitocondrial/genética , Filogenia , Regiones de la Antigüedad/etnología , Secuencia de Bases , ADN Mitocondrial/análisis , ADN Mitocondrial/historia , Variación Genética , Haplotipos , Historia Antigua , Humanos , Región de Control de Posición , Melanesia/etnología , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...