Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 243: 153054, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31648109

RESUMEN

Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.


Asunto(s)
Etilenos/metabolismo , Hordeum/fisiología , Compuestos Organofosforados/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/fisiología , Tiosulfatos/farmacología , Adhesividad , Etilenos/antagonistas & inhibidores , Expresión Génica/fisiología , Hordeum/genética , Permeabilidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Evol Appl ; 11(3): 350-363, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29632553

RESUMEN

To manage emerging forest diseases and prevent their occurrence in the future, it is essential to determine the origin(s) of the pathogens involved and identify the management practices that have ultimately caused disease problems. One such practice is the widespread planting of exotic tree species within the range of related native taxa. This can lead to emerging forest disease both by facilitating introduction of exotic pathogens and by providing susceptible hosts on which epidemics of native pathogens can develop. We used microsatellite markers to determine the origins of the pathogen Dothistroma septosporum responsible for the current outbreak of Dothistroma needle blight (DNB) on native Caledonian Scots pine (Pinus sylvestris) populations in Scotland and evaluated the role played by widespread planting of two exotic pine species in the development of the disease outbreak. We distinguished three races of D. septosporum in Scotland, one of low genetic diversity associated with introduced lodgepole pine (Pinus contorta), one of high diversity probably derived from the DNB epidemic on introduced Corsican pine (Pinus nigra subsp. laricio) in England and a third of intermediate diversity apparently endemic on Caledonian Scots pine. These races differed for both growth rate and exudate production in culture. Planting of exotic pine stands in the UK appears to have facilitated the introduction of two exotic races of D. septosporum into Scotland which now pose a threat to native Caledonian pines both directly and through potential hybridization and introgression with the endemic race. Our results indicate that both removal of exotic species from the vicinity of Caledonian pine populations and restriction of movement of planting material are required to minimize the impact of the current DNB outbreak. They also demonstrate that planting exotic species that are related to native species reduces rather than enhances the resilience of forests to pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...