Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526175

RESUMEN

The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.


Asunto(s)
Núcleos Cerebelosos , Núcleo Olivar , Ratones , Animales , Núcleo Olivar/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Cerebelo/fisiología , Potenciales de Acción/fisiología
2.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31934857

RESUMEN

Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform acquisition and control software, our miniscope is a versatile addition to the expanding tool chest of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior.


Asunto(s)
Microscopía Fluorescente/instrumentación , Red Nerviosa/anatomía & histología , Animales , Conducta Animal , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Femenino , Imagenología Tridimensional , Masculino , Ratones Endogámicos C57BL , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...