Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 496-512, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28111285

RESUMEN

Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are synthesized in the liver and maintained in an enterohepatic circulation. The liver is also the main storage site for vitamin A in the mammalian body, where an intimate collaboration between hepatocytes and hepatic stellate cells leads to the accumulation of retinyl esters in large cytoplasmic lipid droplet hepatic stellate cells. Chronic liver diseases are often characterized by disturbed bile acid and vitamin A homeostasis, where bile production is impaired and hepatic stellate cells lose their vitamin A in a transdifferentiation process to myofibroblasts, cells that produce excessive extracellular matrix proteins leading to fibrosis. Chronic liver diseases thus may lead to vitamin A deficiency. Recent data reveal an intricate crosstalk between vitamin A metabolites and bile acids, in part via the Retinoic Acid Receptor (RAR), Retinoid X Receptor (RXR) and the Farnesoid X Receptor (FXR), in maintaining vitamin A and bile acid homeostasis. Here, we provide an overview of the various levels of "communication" between vitamin A metabolites and bile acids and its relevance for the treatment of chronic liver diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Vitamina A/metabolismo , Ácidos y Sales Biliares/biosíntesis , Homeostasis , Humanos , Hígado/patología , Hepatopatías/complicaciones , Hepatopatías/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptor alfa X Retinoide/metabolismo , Deficiencia de Vitamina A/complicaciones , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/patología
2.
PLoS One ; 9(2): e88011, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498423

RESUMEN

BACKGROUND: Farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRα) is the master transcriptional regulator of bile salt synthesis and transport in liver and intestine. FXR is activated by bile acids, RXRα by the vitamin A-derivative 9-cis retinoic acid (9cRA). Remarkably, 9cRA inhibits binding of FXR/RXRα to its response element, an inverted repeat-1 (IR-1). Still, most FXR/RXRα target genes are maximally expressed in the presence of both ligands, including the small heterodimer partner (SHP). Here, we revisited the FXR/RXRα-mediated regulation of human SHP. METHODS: A 579-bp hSHP promoter element was analyzed to locate FXR/chenodeoxycholic acid (CDCA)- and RXRα/9cRA-responsive elements. hSHP promoter constructs were analyzed in FXR/RXRα-transfected DLD-1, HEK293 and HepG2 cells exposed to CDCA, GW4064 (synthetic FXR ligand) and/or 9cRA. FXR-DNA interactions were analyzed by in vitro pull down assays. RESULTS: hSHP promoter elements lacking the previously identified IR-1 (-291/-279) largely maintained their activation by FXR/CDCA, but were unresponsive to 9cRA. FXR-mediated activation of the hSHP promoter was primarily dependent on the -122/-69 region. Pull down assays revealed a direct binding of FXR to the -122/-69 sequence, which was abrogated by site-specific mutations in a binding site for the liver receptor homolog-1 (LRH-1) at -78/-70. These mutations strongly impaired the FXR/CDCA-mediated activation, even in the context of a hSHP promoter containing the IR-1. LRH-1 did not increase FXR/RXRα-mediated activation of hSHP promoter activity. CONCLUSION: FXR/CDCA-activated expression of SHP is primarily mediated through direct binding to an LRH-1 binding site, which is not modulated by LRH-1 and unresponsive to 9cRA. 9cRA-induced expression of SHP requires the IR-1 that overlaps with a direct repeat-2 (DR-2) and DR-4. This establishes for the first time a co-stimulatory, but independent, action of FXR and RXRα agonists.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Invertidas Repetidas/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta/genética , Sitios de Unión , Western Blotting , Células HEK293 , Células Hep G2 , Humanos , Inmunoprecipitación , Luciferasas/metabolismo , Mutagénesis Sitio-Dirigida , Mutación/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Hepatology ; 52(6): 2167-76, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21049545

RESUMEN

UNLABELLED: Bile acid-CoA:amino acid N-acyltransferase (BAAT) conjugates bile salts to glycine or taurine, which is the final step in bile salt biosynthesis. In addition, BAAT is required for reconjugation of bile salts in the enterohepatic circulation. Recently, we showed that BAAT is a peroxisomal protein, implying shuttling of bile salts through peroxisomes for reconjugation. However, the subcellular location of BAAT remains a topic of debate. The aim of this study was to obtain direct proof for reconjugation of bile salts in peroxisomes. Primary rat hepatocytes were incubated with deuterium-labeled cholic acid (D(4)CA). Over time, media and cells were collected and the levels of D(4)CA, D(4)-tauro-CA (D(4)TCA), and D(4)-glyco-CA (D(4)GCA) were quantified by liquid chromatography-tandem mass spectrometry (LC/MS/MS). Subcellular accumulation of D(4)-labeled bile salts was analyzed by digitonin permeabilization assays and subcellular fractionation experiments. Within 24 hours, cultured rat hepatocytes efficiently (>90%) converted and secreted 100 µM D(4)CA to D(4)TCA and D(4)GCA. The relative amounts of D(4)TCA and D(4)GCA produced were dependent on the presence of glycine or taurine in the medium. Treatment of D(4)CA-exposed hepatocytes with 30-150 µg/mL digitonin led to the complete release of D(4)CA, D(4)GCA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (cytosolic marker). Full release of D(4)TCA, catalase, and BAAT was only observed at 500 µg/mL digitonin, indicating the presence of D(4)TCA in membrane-enclosed organelles. D(4)TCA was detected in fractions of purified peroxisomes, which did not contain D(4)CA and D(4)GCA. CONCLUSION: We established a novel assay to study conjugation and intra- and transcellular transport of bile salts. Using this assay, we show that cholic acid shuttles through peroxisomes for taurine-conjugation.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Hepatocitos/metabolismo , Peroxisomas/metabolismo , Taurina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Colatos/metabolismo , Cromatografía Liquida , Digitonina/farmacología , Masculino , Peroxisomas/efectos de los fármacos , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem
4.
Hepatology ; 52(2): 623-33, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20683960

RESUMEN

UNLABELLED: Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. CONCLUSION: Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.


Asunto(s)
Microdominios de Membrana/fisiología , Proteínas de la Membrana/fisiología , Peroxisomas/fisiología , Fenómenos Biológicos , Colesterol/fisiología , Células Hep G2 , Humanos
5.
Hepatology ; 51(5): 1744-53, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20146263

RESUMEN

UNLABELLED: Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. CONCLUSION: Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.


Asunto(s)
Caveolina 1/metabolismo , Hepatocitos/metabolismo , Peroxisomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Aciltransferasas/metabolismo , Animales , Fenofibrato/análogos & derivados , Fenofibrato/farmacología , Masculino , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Peroxinas , Peroxisomas/efectos de los fármacos , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA