Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37003256

RESUMEN

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Asunto(s)
Microbiota , Infecciones del Sistema Respiratorio , Animales , Femenino , Ratones , Embarazo , Células Dendríticas , Dieta , Propionatos
2.
Microbiol Resour Announc ; 11(11): e0071622, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36197296

RESUMEN

Dickeya species cause soft rots on many commercial crops. Here, we present the draft genomes of Dickeya oryzae (BRIP 64262) and Dickeya zeae (BRIP 64263) isolates causing soft rot on banana (Musa spp.) and pineapple (Ananas comosus) plants, respectively. This expands the range of available genomes from plant-pathogenic Dickeya species.

3.
Microbiol Resour Announc ; 11(10): e0024722, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36129290

RESUMEN

Robbsia andropogonis causes leaf spots, streaks, or stripes on a wide range of commercially important crops. Here, we present the draft genome sequences of two isolates of R. andropogonis sourced from Sorghum bicolor displaying symptoms of bacterial leaf stripe disease in Australia.

4.
Biotechnol Bioeng ; 118(4): 1636-1648, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438216

RESUMEN

Mixed-culture fermentation (MCF) enables carbon recycling from complex organic waste streams into valuable feedstock chemicals. Using complex microbial consortia, MCF systems can be tuned to produce a range of biochemicals to meet market demand. However, the metabolic mechanisms and community interactions which drive biochemical production changes under differing conditions are currently poorly understood. These mechanisms are critical to useful MCF production models. Furthermore, predictable product transitions are currently limited to pH-driven changes between butyrate and ethanol, and chain-elongation (fed by lactate, acetate, and ethanol) to butyrate, valerate, and hexanoate. Lactate, a high-value biopolymer feedstock chemical, has been observed in transition states, but sustained production has not been described. In this study, steady state lactate production was achieved by increasing the organic loading rate of a butyrate-producing system from limiting to nonlimiting conditions at pH 5.5. Crucially, butyrate production resumed upon return to substrate-limited conditions. 16S ribosomal DNA community profiling combined with metaproteomics demonstrated that the butyrate-producing lineage Megasphaera redirected carbon flow through the methylglyoxal bypass when substrate was nonlimiting, which altered the community structure and metabolic expression toward lactate production. This metabolic mechanism can be included in future MCF models to describe the changes in product generation in substrate nonlimiting conditions.


Asunto(s)
Reactores Biológicos , Glucosa/metabolismo , Ácido Láctico/biosíntesis , Consorcios Microbianos , Técnicas de Cocultivo , Fermentación
5.
Sci Total Environ ; 672: 625-633, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30974354

RESUMEN

Sulfate reducing bacteria (SRB) can contribute to facilitating serious concrete corrosion through the production of hydrogen sulfide in sewers. Recently, free nitrous acid (FNA) was discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting hydrogen sulfide production in sewers. However, knowledge of the bacterial response to increasing levels of the antimicrobial agent is unknown. Here we report the proteomic response of Desulfovibrio vulgaris Hildenborough and reveal that the antimicrobial effect of FNA is multi-targeted and dependent on the FNA levels. This was achieved using a sequential window acquisition of all theoretical mass spectrometry analysis to determine protein abundance variations in D. vulgaris during exposure to different FNA concentrations. When exposed to 1.0 µg N/L FNA, nitrite reduction (nitrite reductase) related proteins and nitrosative stress related proteins, including the hybrid cluster protein, showed distinct increased abundances. When exposed to 4.0 and 8.0 µg N/L FNA, increased abundance was detected for proteins putatively involved in nitrite reduction. Abundance of proteins involved in the sulfate reduction pathway (from adenylylphophosulfate to sulfite) and lactate oxidation pathway (from pyruvate to acetate) were initially inhibited in response to FNA at 8 h incubation, and then recovered at 12 h incubation. Lowered ribosomal protein abundance in D. vulgaris was detected, however, total cellular protein levels were mostly constant in the presence or absence of FNA. In addition, this study indicates that proteins coded by genes DVU2543, DVU0772, and DVU3212 potentially participate in resisting oxidative stress with FNA exposure. These findings share new insights for understanding the dynamic responses of D. vulgaris to FNA and could be useful to guide and improve the practical applications of FNA-based technologies for control of sewer corrosion.


Asunto(s)
Antiinfecciosos/toxicidad , Desulfovibrio vulgaris/fisiología , Ácido Nitroso/toxicidad , Proteoma/metabolismo , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Nitrito Reductasas/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Proteómica , Sulfatos , Sulfuros
6.
Nature ; 560(7716): 49-54, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013118

RESUMEN

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.


Asunto(s)
Carbono/metabolismo , Congelación , Metagenoma/genética , Hielos Perennes/química , Hielos Perennes/microbiología , Microbiología del Suelo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Fermentación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Calentamiento Global , Metano/metabolismo , Polisacáridos/metabolismo , Suecia , Xilosa/metabolismo
7.
Biotechnol Bioeng ; 111(11): 2139-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24980940

RESUMEN

Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models.


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Consorcios Microbianos/fisiología , Transporte de Electrón , Metabolismo Energético , Fermentación , Hidrógeno/metabolismo , Compuestos Orgánicos/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...