Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 112(9): 2463-2482, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37031865

RESUMEN

Ball-milling and harsh manufacturing processes often generate crystal disorder which have practical implications on the physical and chemical stabilities of solid drugs during subsequent storage, transport, and handling. The impact of the physical state of solid drugs, containing different degrees/levels of crystal disorder, on their autoxidative stability under storage has not been widely investigated. This study investigates the impact of differing degrees of crystal disorder on the autoxidation of Mifepristone (MFP) to develop a predictive (semi-empirical) stability model. Crystalline MFP was subjected to different durations of ambient ball milling, and the resulting disorder/ amorphous content was quantified using a partial least square (PLS) regression model based on Raman spectroscopy data. Samples of MFP milled to generate varying levels of disorder were subjected to a range of (accelerated) stability conditions, and periodically sampled to examine their recrystallization and degradation extents. Crystallinity was monitored by Raman spectroscopy, and the degradation was evaluated by liquid chromatography. The analyses of milled samples demonstrated a competition between recrystallization and degradation via autoxidation of MFP, to different extents depending on stability conditions/exposure time. The degradation kinetics were analyzed by accounting for the preceding amorphous content, and fitted with a diffusion model. An extended Arrhenius equation was used to predict the degradation of stored samples under long-term (25°C/60% RH) and accelerated (40°C/75% RH, 50°C/75% RH) stability conditions. This study highlights the utility of such a predictive stability model for identifying the autoxidative instability in non-crystalline/partially crystalline MFP, owing to the degradation of the amorphous phases. This study is particularly useful for identifying drug-product instability by leveraging the concept of material sciences.


Asunto(s)
Ciencia de los Materiales , Mifepristona , Cristalización , Estabilidad de Medicamentos , Rastreo Diferencial de Calorimetría
2.
Faraday Discuss ; 242(0): 160-173, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36178317

RESUMEN

Nanoparticles with diameters in the range of a few nanometers, consisting of gold and vanadium oxide, are synthesized by sequential doping of cold helium droplets in a molecular beam apparatus and deposited on solid carbon substrates. After surface deposition, the samples are removed and various measurement techniques are applied to characterize the created particles: scanning transmission electron microscopy (STEM) at atomic resolution, temperature dependent STEM and TEM up to 650 °C, energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). In previous experiments we have shown that pure V2O5 nanoparticles can be generated by sublimation from the bulk and deposited without affecting their original stoichiometry. Interestingly, our follow-up attempts to create Au@V2O5 core@shell particles do not yield the expected encapsulated structure. Instead, Janus particles of Au and V2O5 with diameters between 10 and 20 nm are identified after deposition. At the interface of the Au and the V2O5 parts we observe an epitaxial-like growth of the vanadium oxide next to the Au structure. To test the temperature stability of these Janus-type particles, the samples are heated in situ during the STEM measurements from room temperature up to 650 °C, where a reduction from V2O5 to V2O3 is followed by a restructuring of the gold atoms to form a Wulff-shaped cluster layer. The temperature dependent dynamic interplay between gold and vanadium oxide in structures of only a few nanometer size is the central topic of this contribution to the Faraday Discussion.

3.
Ultramicroscopy ; 234: 113477, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123207

RESUMEN

High-resolution STEM-EELS provides information about the composition of crystalline materials at the atomic scale, though a reliable quantitative chemical analysis is often hampered by zone axis conditions, where neighbouring atomic column intensities contribute to the signal at the probe position. In this work, we present a procedure to determine the concentration of two elements within equivalent atomic columns from EELS elemental maps - in our case barium and lanthanum within the A-sites of Ba1.1La1.9Fe2O7, a second order Ruddlesden-Popper phase. We took advantage of the large changes in the elemental distribution from column to column and introduced a technique, which substitutes inelastic scattering cross sections during the quantification step by using parameters obtained from the actual experiment. We considered channelling / de-channelling effects via inelastic multislice simulations and were thereby able to count occupancies in each atomic column. The EELS quantification results were then used as prior information during the Rietveld refinement in XRD measurements in order to differentiate between barium and lanthanum.

4.
Histochem Cell Biol ; 157(1): 107-118, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738145

RESUMEN

Amilenus aurantiacus overwinter in diapause, a natural starvation period, in hypogean habitats. The structure of spherites in the midgut diverticula (MD) and Malpighian tubules (MT) has been studied comparatively by light microscopy and TEM to detect eventual differences in mineral consumption in the beginning and at the end of the starvation period in these organs (MD and MT) associated with digestive processes. The chemical composition of spherites was examined by combining energy-dispersive X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM). The structure of the spherites changed during overwintering in both organs. At the beginning of overwintering, the spherites were composed of densely packed concentric layers of electron-dense and electron-lucent material. In the middle and at the end of overwintering, the electron-lucent layers between the layers of material indicated the loss of some material. The chemical composition of the spherites changed only in the MD; at the beginning of overwintering, these contained Si, O, C and Fe, while later there was no more Fe. In contrast, spherites in the MT were composed of Si, O, C and Ca throughout overwintering. A less intensive exploitation of the MD spherites was probably due to complete cessation of digestive and other cell activity in this organ during the winter diapause; activity of the MT slowed, but continued removing the cell metabolites.


Asunto(s)
Diapausa , Divertículo , Animales , Sistema Digestivo , Túbulos de Malpighi/ultraestructura , Estaciones del Año
5.
Micron ; 153: 103177, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915271

RESUMEN

Whole sample microscopy mappings are of interest in many cases as they provide analytical information of phases varying in size by orders of magnitude and in composition across the sample. These benefits are amplified if more than one microscopic technique is used for the mappings. However, to take full advantage of correlative whole sample mappings, the data of each technique has to be carefully prepared, treated, correlated and evaluated. With this work, we want to present the key steps of our data treatment approach as well as the results on an exemplary sample, the Chelyabinsk meteorite. The most important step in our data treatment approach is to start by evaluating the spectral maps separately as far as possible (at-% quantification for EDS for example) and then generate pseudo spectral maps from this evaluation in the form of image stacks. This allows us to preserve the advantages of specialized software packages and standard work flows for every spectral mapping, whilst also unifying the data format and compressing the data sufficiently for correlation and the application of machine learning tools. We have performed whole sample mappings using SEM, EDS and Raman on a cross-section of a Chelyabinsk meteorite fragment, roughly 1.0cm × 0.8cm large. Combining these mappings into a single "super" spectral map, we were able to produce a uniquely detailed mapping of the composition of the meteorite fragment, as well as perform a quantitative analysis of the elemental composition of several crystallographic phases. The results of our compositional analysis; olivine (Fo72Fa28), pyroxene (≈ 97 % En80Fs20Wo0 and 3 % En56Fs6Wo38), feldspar (albite), troilite, FeNi (taenite and kamacite), merrillite, chromite and hydroxyapatite; agree qualitatively with other reports from literature.


Asunto(s)
Meteoroides
6.
Materials (Basel) ; 14(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34300775

RESUMEN

Precipitation hardened and tempered martensitic-ferritic steels (TMFSs) are used in many areas of our daily lives as tools, components in power generation industries, or in the oil and gas (O&G) industry for creep and corrosion resistance. In addition to the metallurgical and forging processes, the unique properties of the materials in service are determined by the quality heat treatment (HT). By performing a quenching and partitioning HT during an in situ high energy synchrotron radiation experiment in a dilatometer, the evolution of retained austenite, martensite laths, dislocations, and carbides was characterized in detail. Atomic-scale studies on a specimen with the same HT subjected to a laser scanning confocal microscope show how dislocations facilitate cloud formation around carbides. These clouds have a discrete build-up, and thermodynamic calculations and density functional theory explain their stability.

7.
Micron ; 140: 102981, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33202362

RESUMEN

Electron energy-loss spectroscopy (EELS) is a powerful tool for imaging chemical variations at the nanoscale. Here, we investigate a polymer/organic small molecule-blend used as absorber layer in an organic solar cell and employ EELS for distinguishing polymer donor and small molecule acceptor domains in the nanostructured blend based on elemental maps of light elements, such as nitrogen, sulfur or fluorine. Especially for beam sensitive samples, the electron dose needs to be limited, therefore optimized acquisition and data processing strategies are required. We compare data acquired on a post-column energy filter with a direct electron detection camera to data from a conventional CCD camera on the same filter and we investigate the impact of statistical data processing methods (principal components analysis, PCA) on acquired spectra and elemental maps extracted from spectrum images. Our work shows, that the quality of spectra on a direct electron detection camera is far superior to conventional CCD imaging, and thereby allows clear identification of ionization edges and the fine structure of these edges. For the quality of the elemental maps, the application of PCA is essential to allow a clear separation between the donor and acceptor phase in the bulk heterojunction absorber layer of a non-fullerene organic solar cell.

8.
J Phys Chem C Nanomater Interfaces ; 124(30): 16680-16688, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32765801

RESUMEN

The temperature-induced structural changes of Fe-, Co-, and Ni-Au core-shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated temperatures. The experimental observations are accompanied by a computational modeling of all core-shell particles with either centralized or decentralized core positions. The embedded atom model is employed and further supported by density functional theory calculations. We provide a detailed comparison of vacancy formation energies obtained for all materials involved in order to explain the variations in the restructuring processes which we observe in temperature-programmed TEM studies of the particles.

9.
Phys Chem Chem Phys ; 21(37): 21104-21108, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31528952

RESUMEN

Vanadium oxide clusters with a mean diameter below 10 nm are investigated by high resolution Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy. The clusters are synthesised by sublimation from bulk vanadium(v) oxide, in combination with a pick-up by superfluid helium droplets. The latter act as reaction chambers which enable cluster growth under fully inert and solvent-free conditions. High-resolution STEM images of deposited vanadium oxide particles allowing for the determination of lattice constants, clearly indicate a dominating presence of V2O5. This finding is further supported by UV-vis absorption spectra of nanoparticles after deposition on fused silica substrates, which indicates that the oxidation state of the material is preserved over the entire process. From the results of the UV-vis measurement, the band gap of the nanosized V2O5 could be determined to be 3.3 eV. The synthesis approach provides a route to clean V2O5 clusters as it does not involve any surfactant or solvents, which is crucial for an unbiased measurement of intrinsic catalyst properties.

10.
J Phys Chem C Nanomater Interfaces ; 123(32): 20037-20043, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33014236

RESUMEN

Structural changes of Ni-Au core-shell nanoparticles with increasing temperature are studied at atomic resolution. The bimetallic clusters, synthesized in superfluid helium droplets, show a centralized Ni core, which is an intrinsic feature of the growth process inside helium. After deposition on SiN x , the nanoparticles undergo a programmed temperature treatment in vacuum combined with an in situ transmission electron microscopy study of structural changes. We observe not only full alloying far below the actual melting temperature, but also a significantly higher stability of core-shell structures with decentralized Ni cores. Explanations are provided by large-scale molecular dynamics simulations on model structures consisting of up to 3000 metal atoms. Two entirely different diffusion processes can be identified for both types of core-shell structures, strikingly illustrating how localized, atomic features can still dictate the overall behavior of a nanometer-sized particle.

11.
Nanoscale Adv ; 1(6): 2276-2283, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131962

RESUMEN

The oxidation of Fe@Au core@shell clusters with sizes below 5 nm is studied via high resolution scanning transmission electron microscopy. The bimetallic nanoparticles are grown in superfluid helium droplets under fully inert conditions, avoiding any effect of solvents or template structures, and deposited on amorphous carbon. Oxidation resistivity is tested by exposure to oxygen at ambient conditions. The passivating effect of Au-shells is studied in detail and a critical Au shell thickness is determined which keeps the Fe core completely unharmed. Additionally, we present the first synthesis of Fe@Au@Fe-oxide onion-type structures.

12.
Ultramicroscopy ; 192: 69-79, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29902687

RESUMEN

We present a computational scheme to simulate beam induced dynamics of atoms in surface dominated, metallic systems. Our approach is based on molecular dynamics and Monte Carlo techniques. The model is tested with clusters comprised of either Ni, Ag or Au. We vary their sizes and apply different electron energies and cluster temperatures to elucidate fundamental relations between these experimental parameters and beam induced displacement probabilities. Furthermore, we demonstrate the capability of our code to simulate beam driven dynamics by using Ag and Au clusters as demonstration systems. Simulations of beam induced displacement and sputtering effects are compared with experimental results obtained via scanning transmission electron microscopy. The clusters in question are synthesised with exceptional purity inside inert superfluid He droplets and deposited on amorphous carbon supports. The presented results may help to understand electron beam driven processes in metallic systems.

13.
ACS Photonics ; 5(3): 861-866, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29607350

RESUMEN

Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150-500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode. For the investigated diameter range, we find the CL signal to increase by about 1 order of magnitude, in agreement with numerical simulations. Due to reciprocity, our findings corroborate former optical experiments and enable a quantitative understanding of the light coupling of dark plasmonic modes.

14.
Nanoscale ; 10(4): 2017-2024, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29319708

RESUMEN

Alloying processes in nanometre-sized Ag@Au and Au@Ag core@shell particles with average radii of 2 nm are studied via high resolution Transmission Electron Microscopy (TEM) imaging on in situ heatable carbon substrates. The bimetallic clusters are synthesized in small droplets of superfluid helium under fully inert conditions. After deposition, they are monitored during a heating cycle to 600 K and subsequent cooling. The core-shell structure, a sharply defined feature of the TEM High-Angle Annular Dark-Field images taken at room temperature, begins to blur with increasing temperature and transforms into a fully mixed alloy around 573 K. This transition is studied at atomic resolution, giving insights into the alloying process with unprecedented precision. A new image-processing method is presented, which allows a measurement of the temperature-dependent diffusion constant at the nanoscale. The first quantification of this property for a bimetallic structure <5 nm sheds light on the thermodynamics of finite systems and provides new input for current theoretical models derived from bulk data.

15.
Nano Lett ; 17(11): 6773-6777, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28981295

RESUMEN

Plasmonic gap modes provide the ultimate confinement of optical fields. Demanding high spatial resolution, the direct imaging of these modes was only recently achieved by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). However, conventional 2D STEM-EELS is only sensitive to components of the photonic local density of states (LDOS) parallel to the electron trajectory. It is thus insensitive to specific gap modes, a restriction that was lifted with the introduction of tomographic 3D EELS imaging. Here, we show that by 3D EELS tomography the gap mode LDOS of a vertically stacked nanotriangle dimer can be fully imaged. Besides probing the complete mode spectrum, we demonstrate that the tomographic approach allows disentangling the signal contributions from the two nanotriangles that superimpose in a single measurement with a fixed electron trajectory. Generally, vertically coupled nanoparticles enable the tailoring of 3D plasmonic fields, and their full characterization will thus aid the development of complex nanophotonic devices.

16.
Ultramicroscopy ; 176: 105-111, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28351552

RESUMEN

We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures.

17.
Phys Chem Chem Phys ; 19(14): 9402-9408, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28327747

RESUMEN

We present time-resolved transmission electron microscopy studies of the degradation of Au, Ag, Cu and Ni nanowires deposited on a heated support. The wires are grown under fully inert conditions in superfluid helium droplets and deposited onto amorphous carbon. The inherent stability of these pristine metal nanowires with diameters below 10 nm is investigated in the absence of any stabilizers, templates or solvents. The phenomenon of Rayleigh-breakup, a consequence of diffusion processes along the wire surfaces, is analysed in situ via scans over time and support temperature. Our experimental efforts are combined with simulations based on a novel model featuring a cellular automaton to emulate surface diffusion. Based on this model, correlations between the material parameters and actual breakup behaviour are studied.

18.
Ultramicroscopy ; 174: 1-7, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27992781

RESUMEN

We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures.

19.
Micron ; 93: 43-51, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27918893

RESUMEN

Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph®)) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details.

20.
Nano Lett ; 16(8): 5152-5, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27427962

RESUMEN

The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA