Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 11(7): 925-945, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172100

RESUMEN

IMA101 is an actively personalized, multi-targeted adoptive cell therapy (ACT), whereby autologous T cells are directed against multiple novel defined peptide-HLA (pHLA) cancer targets. HLA-A*02:01-positive patients with relapsed/refractory solid tumors expressing ≥1 of 8 predefined targets underwent leukapheresis. Endogenous T cells specific for up to 4 targets were primed and expanded in vitro. Patients received lymphodepletion (fludarabine, cyclophosphamide), followed by T-cell infusion and low-dose IL2 (Cohort 1). Patients in Cohort 2 received atezolizumab for up to 1 year (NCT02876510). Overall, 214 patients were screened, 15 received lymphodepletion (13 women, 2 men; median age, 44 years), and 14 were treated with T-cell products. IMA101 treatment was feasible and well tolerated. The most common adverse events were cytokine release syndrome (Grade 1, n = 6; Grade 2, n = 4) and expected cytopenias. No patient died during the first 100 days after T-cell therapy. No neurotoxicity was observed. No objective responses were noted. Prolonged disease stabilization was noted in three patients lasting for 13.7, 12.9, and 7.3 months. High frequencies of target-specific T cells (up to 78.7% of CD8+ cells) were detected in the blood of treated patients, persisted for >1 year, and were detectable in posttreatment tumor tissue. Individual T-cell receptors (TCR) contained in T-cell products exhibited broad variation in TCR avidity, with the majority being low avidity. High-avidity TCRs were identified in some patients' products. This study demonstrates the feasibility and tolerability of an actively personalized ACT directed to multiple defined pHLA cancer targets. Results warrant further evaluation of multi-target ACT approaches using potent high-avidity TCRs. See related Spotlight by Uslu and June, p. 865.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Adulto , Femenino , Humanos , Masculino , Linfocitos T CD8-positivos , Estudios de Factibilidad , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Neoplasias/etiología , Receptores de Antígenos de Linfocitos T/genética
2.
Sci Transl Med ; 14(660): eabo6135, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044599

RESUMEN

T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Linfocitos T , Antígenos de Neoplasias , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/métodos , Proteómica , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/uso terapéutico
3.
Mol Cell Proteomics ; 20: 100110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34129939

RESUMEN

Knowledge about the peptide repertoire presented by human leukocyte antigens (HLA) holds the key to unlock target-specific cancer immunotherapies such as adoptive cell therapies or bispecific T cell engaging receptors. Therefore, comprehensive and accurate characterization of HLA peptidomes by mass spectrometry (immunopeptidomics) across tissues and disease states is essential. With growing numbers of immunopeptidomics datasets and the scope of peptide identification strategies reaching beyond the canonical proteome, the likelihood for erroneous peptide identification as well as false annotation of HLA-independent peptides as HLA ligands is increasing. Such "fake ligands" can lead to selection of nonexistent targets for immunotherapeutic development and need to be recognized as such as early as possible in the preclinical pipeline. Here we present computational and experimental methods that enable the identification of "fake ligands" that might be introduced at different steps of the immunopeptidomics workflow. The statistics presented herein allow discrimination of true HLA ligands from coisolated HLA-independent proteolytic fragments. In addition, we describe necessary steps to ensure system suitability of the chromatographic system. Furthermore, we illustrate an algorithm for detection of source fragmentation events that are introduced by electrospray ionization during mass spectrometry. For confirmation of peptide sequences, we present an experimental pipeline that enables high-throughput sequence verification through similarity of fragmentation pattern and coelution of synthetic isotope-labeled internal standards. Based on these methods, we show the overall high quality of existing datasets but point out limitations and pitfalls critical for individual peptides and how they can be uncovered in order to identify true ligands.


Asunto(s)
Antígenos HLA , Péptidos , Humanos , Ligandos , Proteolisis , Proteoma , Proteómica
4.
Nat Commun ; 9(1): 3919, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254248

RESUMEN

In addition to genomic mutations, RNA editing is another major mechanism creating sequence variations in proteins by introducing nucleotide changes in mRNA sequences. Deregulated RNA editing contributes to different types of human diseases, including cancers. Here we report that peptides generated as a consequence of RNA editing are indeed naturally presented by human leukocyte antigen (HLA) molecules. We provide evidence that effector CD8+ T cells specific for edited peptides derived from cyclin I are present in human tumours and attack tumour cells that are presenting these epitopes. We show that subpopulations of cancer patients have increased peptide levels and that levels of edited RNA correlate with peptide copy numbers. These findings demonstrate that RNA editing extends the classes of HLA presented self-antigens and that these antigens can be recognised by the immune system.


Asunto(s)
Antígenos de Neoplasias/inmunología , Epítopos/inmunología , Sistema Inmunológico/inmunología , Neoplasias/inmunología , Edición de ARN/inmunología , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Ciclina I/genética , Ciclina I/inmunología , Ciclina I/metabolismo , Citotoxicidad Inmunológica/inmunología , Antígenos HLA/inmunología , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Proteogenómica/métodos
5.
Proteomics ; 18(12): e1700284, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505699

RESUMEN

Immunotherapy is revolutionizing cancer treatment and has shown success in particular for tumors with a high mutational load. These effects have been linked to neoantigens derived from patient-specific mutations. To expand efficacious immunotherapy approaches to the vast majority of tumor types and patient populations carrying only a few mutations and maybe not a single presented neoepitope, it is necessary to expand the target space to non-mutated cancer-associated antigens. Mass spectrometry enables the direct and unbiased discovery and selection of tumor-specific human leukocyte antigen (HLA) peptides that can be used to define targets for immunotherapy. Combining these targets into a warehouse allows for multi-target therapy and accelerated clinical application. For precise personalization aimed at optimally ensuring treatment efficacy and safety, it is necessary to assess the presence of the target on each individual patient's tumor. Here we show how LC-MS paired with gene expression data was used to define mRNA biomarkers currently being used as diagnostic test IMADETECT™ for patient inclusion and personalized target selection within two clinical trials (NCT02876510, NCT03247309). Thus, we present a way how to translate HLA peptide presentation into gene expression thresholds for companion diagnostics in immunotherapy considering the peptide-specific correlation to its encoding mRNA.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antígenos HLA/metabolismo , Inmunoterapia , Neoplasias/metabolismo , Fragmentos de Péptidos/metabolismo , Medicina de Precisión , Proteogenómica/métodos , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Toma de Decisiones , Epítopos/inmunología , Epítopos/metabolismo , Antígenos HLA/análisis , Antígenos HLA/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectrometría de Masas/métodos , Neoplasias/inmunología , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/inmunología
6.
J Chem Inf Model ; 57(8): 1907-1922, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28700231

RESUMEN

A neglect of diatomic differential overlap (NDDO) Hamiltonian has been parametrized as an electronic component of a polarizable force field. Coulomb and exchange potentials derived directly from the NDDO Hamiltonian in principle can be used with classical potentials, thus forming the basis for a new generation of efficiently applicable multipolar polarizable force fields. The new hpCADD Hamiltonian uses force-field-like atom types and reproduces the electrostatic properties (dipole moment, molecular electrostatic potential) and Koopmans' theorem ionization potentials closely, as demonstrated for a large training set and an independent test set of small molecules. The Hamiltonian is not intended to reproduce geometries or total energies well, as these will be controlled by the classical force-field potentials. In order to establish the hpCADD Hamiltonian as an electronic component in force-field-based calculations, we tested its performance in combination with the 3D reference interaction site model (3D RISM) for aqueous solutions. Comparison of the resulting solvation free energies for the training and test sets to atomic charges derived from standard procedures, exact solute-solvent electrostatics based on high-level quantum-chemical reference data, and established semiempirical Hamiltonians demonstrates the advantages of the hpCADD parametrization.


Asunto(s)
Modelos Moleculares , Electricidad Estática , Conformación Molecular , Termodinámica
7.
J Med Chem ; 58(17): 6844-63, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26275028

RESUMEN

Receptor tyrosine kinases represent one of the prime targets in cancer therapy, as the dysregulation of these elementary transducers of extracellular signals, like the epidermal growth factor receptor (EGFR), contributes to the onset of cancer, such as non-small cell lung cancer (NSCLC). Strong efforts were directed to the development of irreversible inhibitors and led to compound CO-1686, which takes advantage of increased residence time at EGFR by alkylating Cys797 and thereby preventing toxic effects. Here, we present a structure-based approach, rationalized by subsequent computational analysis of conformational ligand ensembles in solution, to design novel and irreversible EGFR inhibitors based on a screening hit that was identified in a phenotype screen of 80 NSCLC cell lines against approximately 1500 compounds. Using protein X-ray crystallography, we deciphered the binding mode in engineered cSrc (T338M/S345C), a validated model system for EGFR-T790M, which constituted the basis for further rational design approaches. Chemical synthesis led to further compound collections that revealed increased biochemical potency and, in part, selectivity toward mutated (L858R and L858R/T790M) vs nonmutated EGFR. Further cell-based and kinetic studies were performed to substantiate our initial findings. Utilizing proteolytic digestion and nano-LC-MS/MS analysis, we confirmed the alkylation of Cys797.


Asunto(s)
Antineoplásicos/química , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Receptores ErbB/genética , Humanos , Cinética , Neoplasias Pulmonares , Modelos Moleculares , Conformación Molecular , Mutación , Pirazoles/química , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Bibliotecas de Moléculas Pequeñas , Solubilidad , Relación Estructura-Actividad , Familia-src Quinasas/química , Familia-src Quinasas/genética
8.
J Comput Chem ; 34(1): 10-20, 2013 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-22941794

RESUMEN

The validity and accuracy of a proposed tertiary structure of a protein can be assessed in several ways. Scoring such a structure by a knowledge-based potential is a well-known approach in molecular biophysics, an important task in structure prediction and refinement, and a key step in several experiments on protein structures. Although several parameterizations for such models have been derived over the course of time, improvements in accuracy by explicitly using continuous distance information have not been suggested yet. We close this methodological gap by formulating the parameterization of a protein structure model as a linear program. Optimization of the parameters was performed using amino acid distances calculated for the residues in topology rich 2830 protein structures. We show the capability of our derived model to discriminate between native structures and decoys for a diverse set of proteins. In addition, we discuss the effect of reduced amino acid alphabets on the model. In contrast to studies focusing on binary contact schemes (without considering distance dependencies and proposing five symbols as optimal alphabet size), we find an accurate protein alphabet size to contain at least five symbols, preferably more, to assure a satisfactory fold recognition capability.


Asunto(s)
Aminoácidos/química , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química
9.
J Chem Theory Comput ; 9(11): 4718-26, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26583390

RESUMEN

Modeling solute polarizability is a key ingredient for improving the description of solvation phenomena. In recent years, polarizable molecular mechanics force fields have emerged that circumvent the limitations of classical fixed charge force fields by the ability to adapt their electrostatic potential distribution to a polarizing environment. Solvation phenomena are characterized by the solute's excess chemical potential, which can be computed by expensive fully atomistic free energy simulations. The alternative is to employ an implicit solvent model, which poses a challenge to the formulation of the solute-solvent interaction term within a polarizable framework. Here, we adapt the three-dimensional reference interaction site model (3D RISM) integral equation theory as a solvent model, which analytically yields the chemical potential, to the polarizable AMOEBA force field using an embedding cluster (EC-RISM) strategy. The methodology is analogous to our earlier approach to the coupling of a quantum-chemical solute description with a classical 3D RISM solvent. We describe the conceptual physical and algorithmic basis as well as the performance for several benchmark cases as a proof of principle. The results consistently show reasonable agreement between AMOEBA and quantum-chemical free energies in solution in general and allow for separate assessment of energetic and solvation-related contributions. We find that, depending on the parametrization, AMOEBA reproduces the chemical potential in better agreement with reference quantum-chemical calculations than the intramolecular energies, which suggests possible routes toward systematic improvement of polarizable force fields.

10.
Proteins ; 79(11): 3144-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21989935

RESUMEN

Acetylcholinesterase (AChE) is an important enzyme in the nervous system. It terminates signal transmission at chemical synapses by degrading the neurotransmitter acetylcholine and was found to play a role in plaque formation in Alzheimer's disease. Several functional parts of its structure have been identified in the past. Here, we use a coarse-grained anisotropic network model approach based on structure data to analyze protein mechanics of AChE. Single contacts in the protein are "switched off" and the change in the intrinsic dynamics is measured. We correlate the gained insight with information about coevolution within the molecule derived from multiple sequence alignments. More than 300 AChE sequences were aligned and the mutual information of the positions was calculated. From these structural, biophysical, and evolutionary data we could reveal sites of coevolutionary signatures in AChE, annotate them by the selective pressure induced for biophysical reasons, and further pave the way for a more detailed understanding of evolutionary boundary conditions for AChE.


Asunto(s)
Acetilcolinesterasa/genética , Evolución Molecular , Anotación de Secuencia Molecular/métodos , Acetilcolinesterasa/química , Secuencia de Aminoácidos , Anisotropía , Fenómenos Biofísicos , Simulación de Dinámica Molecular , Alineación de Secuencia
11.
Mol Microbiol ; 81(1): 56-68, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21542854

RESUMEN

Gas vesicles are gas-filled protein structures increasing the buoyancy of cells. The gas vesicle envelope is mainly constituted by the 8 kDa protein GvpA forming a wall with a water excluding inner surface. A structure of GvpA is not available; recent solid-state NMR results suggest a coil-α-ß-ß-α-coil fold. We obtained a first structural model of GvpA by high-performance de novo modelling. Attenuated total reflection (ATR)-Fourier transform infrared spectroscopy (FTIR) supported this structure. A dimer of GvpA was derived that could explain the formation of the protein monolayer in the gas vesicle wall. The hydrophobic inner surface is mainly constituted by anti-parallel ß-strands. The proposed structure allows the pinpointing of contact sites that were mutated and tested for the ability to form gas vesicles in haloarchaea. Mutations in α-helix I and α-helix II, but also in the ß-turn affected the gas vesicle formation, whereas other alterations had no effect. All mutants supported the structural features deduced from the model. The proposed GvpA dimers allow the formation of a monolayer protein wall, also consistent with protease treatments of isolated gas vesicles.


Asunto(s)
Euryarchaeota/genética , Euryarchaeota/metabolismo , Mutación Missense , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/genética , Espectroscopía Infrarroja por Transformada de Fourier
12.
J Biol Chem ; 286(13): 11299-306, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21310959

RESUMEN

The small viral channel Kcv is a Kir-like K(+) channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K(+) channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K(+) channels and also present in Kir2.2, implying a general importance of this architecture for K(+) channel function.


Asunto(s)
Modelos Moleculares , Canales de Potasio/química , Proteínas Virales/química , Sustitución de Aminoácidos , Animales , Prueba de Complementación Genética , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Mutación Missense , Canales de Potasio/genética , Canales de Potasio/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Proteins ; 78(10): 2322-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20544967

RESUMEN

Reduced amino acid alphabets are useful to understand molecular evolution as they reveal basal, shared properties of amino acids, which the structures and functions of proteins rely on. Several previous studies derived such reduced alphabets and linked them to the origin of life and biotechnological applications. However, all this previous work presupposes that only direct contacts of amino acids in native protein structures are relevant. We show in this work, using information-theoretical measures, that an appropriate alphabet reduction scheme is in fact a function of the maximum distance amino acids interact at. Although for small distances our results agree with previous ones, we show how long-range interactions change the overall picture and prompt for a revised understanding of the protein design process.


Asunto(s)
Aminoácidos/química , Aminoácidos/clasificación , Teoría de la Información , Proteínas/química , Biología Computacional/métodos , Bases de Datos de Proteínas , Evolución Molecular , Peso Molecular , Análisis de Componente Principal , Conformación Proteica
14.
BMC Bioinformatics ; 11: 199, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20412558

RESUMEN

BACKGROUND: One of the most challenging aspects of biomolecular systems is the understanding of the coevolution in and among the molecule(s).A complete, theoretical picture of the selective advantage, and thus a functional annotation, of (co-)mutations is still lacking. Using sequence-based and information theoretical inspired methods we can identify coevolving residues in proteins without understanding the underlying biophysical properties giving rise to such coevolutionary dynamics. Detailed (atomistic) simulations are prohibitively expensive. At the same time reduced molecular models are an efficient way to determine the reduced dynamics around the native state. The combination of sequence based approaches with such reduced models is therefore a promising approach to annotate evolutionary sequence changes. RESULTS: With the R package BioPhysConnectoR we provide a framework to connect the information theoretical domain of biomolecular sequences to biophysical properties of the encoded molecules - derived from reduced molecular models. To this end we have integrated several fragmented ideas into one single package ready to be used in connection with additional statistical routines in R. Additionally, the package leverages the power of modern multi-core architectures to reduce turn-around times in evolutionary and biomolecular design studies. Our package is a first step to achieve the above mentioned annotation of coevolution by reduced dynamics around the native state of proteins. CONCLUSIONS: BioPhysConnectoR is implemented as an R package and distributed under GPL 2 license. It allows for efficient and perfectly parallelized functional annotation of coevolution found at the sequence level.


Asunto(s)
Proteínas/química , Programas Informáticos , Sitios de Unión , Biofisica , Bases de Datos Genéticas , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Relación Estructura-Actividad
15.
Comput Biol Chem ; 33(6): 440-4, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19910254

RESUMEN

Mutual information (MI) is a standard measure in information theory to observe and quantify correlated signals and events in both, empirical data sets and theoretical models. In the field of computational biology the MI turned out to be particularly useful in studies on co-evolutionary signals of sites within biomolecules. A key issue in the applicability of the MI is, however, a correct reference system or null model to understand finite-size effects in the underlying, finite data set. Although some bioinformatics studies exist with rigorous results for theoretical, well-designed random distributions, data from real-world proteins was never used to quantify the effect of finite-size samples. The impact of real-world statistics is, however, most relevant for researchers in all fields concerned with detecting evolutionary signals within biological sequences. We present results on such effects in finite-sized biological data sets and point to future research directions. We are most of all concerned with bacterial, ribosomal proteins as a prototypical example in molecular evolution. We compare to previous published suggestions, give an empirical formula, and propose a protocol to guide future research projects.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Proteínas Ribosómicas/química , Bases de Datos de Proteínas , Proteínas Ribosómicas/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA