Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(11): e202400084, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38519865

RESUMEN

Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S-S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g-1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g-1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo-S coordination in Mo3S13 chalcogel. These findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.

2.
Nat Mater ; 23(2): 230-236, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172544

RESUMEN

Rhenium chalcohalide cluster compounds are a photoluminescent family of mixed-anion chalcohalide cluster materials. Here we report the new material Rb6Re6S8I8, which crystallizes in the cubic space group Fm[Formula: see text]m and contains isolated [Re6S8I6]4- clusters. Rb6Re6S8I8 has a band gap of 2.06(5) eV and an ionization energy of 5.51(3) eV, and exhibits broad photoluminescence (PL) ranging from 1.01 eV to 2.12 eV. The room-temperature PL exhibits a PL quantum yield of 42.7% and a PL lifetime of 77 µs (99 µs at 77 K). Rb6Re6S8I8 is found to be soluble in multiple polar solvents including N,N-dimethylformamide, which enables solution processing of the material into films with thickness under 150 nm. Light-emitting diodes based on films of Rb6Re6S8I8 were fabricated, demonstrating the potential for this family of materials in optoelectronic devices.

3.
IUCrJ ; 11(Pt 1): 120-128, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133556

RESUMEN

The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films.

4.
Nat Nanotechnol ; 17(1): 45-52, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34811551

RESUMEN

Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I-I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device's fill factor and open-circuit voltage.

5.
J Am Chem Soc ; 143(11): 4244-4252, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33688726

RESUMEN

Two-dimensional (2D) semiconductors are attractive candidates for a variety of optoelectronic applications owing to the unique electronic properties that arise from quantum confinement along a single dimension. Incorporating nonradiative mechanisms that enable directed migration of bound charge carriers, such as Förster resonance energy transfer (FRET), could boost device efficiencies provided that FRET rates outpace undesired relaxation pathways. However, predictive models for FRET between distinct 2D states are lacking, particularly with respect to the distance d between a donor and acceptor. We approach FRET in systems with binary mixtures of donor and acceptor 2D perovskite quantum wells (PQWs), and we synthetically tune distances between donor and acceptor by varying alkylammonium spacer cation lengths. FRET rates are monitored using transient absorption spectroscopy and ultrafast photoluminescence, revealing rapid picosecond lifetimes that scale with spacer cation length. We theoretically model these binary mixtures of PQWs, describing the emitters as classical oscillating dipoles. We find agreement with our empirical lifetimes and then determine the effects of lateral extent and layer thickness, establishing fundamental principles for FRET in 2D materials.

6.
ACS Nano ; 15(3): 4165-4172, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33661603

RESUMEN

An emerging class of methylammonium lead iodide (MAPbI3)-based Ruddlesden-Popper (RP) phase perovskites, BA2MAn-1PbnI3n+1 (n = 1-7), exhibit enhanced stability to environmental conditions relative to MAPbI3, yet still degrade at elevated temperatures. We experimentally determine the thermal conductivities of these layered RP phases for n = 1-6, where n defines the number of repeated perovskite octahedra per layer. We measure thermal conductivities of 0.37 ± 0.13/0.12, 0.17 ± 0.08/0.07, 0.21 ± 0.05/0.04, and 0.19 ± 0.04/0.03 W/m·K in thin films of n = 1-4 and 0.08 ± 0.06/0.04, 0.06 ± 0.04/0.03, 0.06 ± 0.03/0.03, and 0.08 ± 0.07/0.04 W/m·K in single crystals of n = 3-6. With the exception of n = 1, these thermal conductivities are lower than the range of 0.34-0.50 W/m·K reported for single-crystal MAPbI3. Reduced-order lattice dynamics modeling suggests that the initially decreasing trend of thermal conductivity in similarly oriented perovskites with increasing n may result from the transport properties of coherent phonons, emergent from the superstructure, that do not scatter at the interfaces of organic butylammonium chains and perovskite octahedra. Reduced group velocity of coherent phonons in n = 3-6, a consequence of band flattening in the phonon dispersion, is primarily responsible for their ultralow thermal conductivities. Similar effects on thermal conductivity have been experimentally demonstrated in deposited superlattices, but never in naturally defined materials such as RP phases. GIWAXS measurements reveal that higher n RP phase thin films are less orientationally controlled and therefore possess apparently elevated thermal conductivities relative to single crystals of the same n.

7.
Chem Rev ; 121(4): 2230-2291, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33476131

RESUMEN

Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.

8.
J Am Chem Soc ; 142(46): 19705-19714, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147413

RESUMEN

The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).

9.
J Am Chem Soc ; 142(35): 15049-15057, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786780

RESUMEN

The advent of the two-dimensional (2D) family of halide perovskites and their demonstration in 2D/three-dimensional (3D) hierarchical film structures broke new ground toward high device performance and good stability. The 2D Dion-Jacobson (DJ) phase halide perovskites are especially attractive in solar cells because of their superior charge transport properties. Here, we report on 2D DJ phase perovskites using a 3-(aminomethyl)piperidinium (3AMP) organic spacer for the fabrication of mixed Pb/Sn-based perovskites, exhibiting a narrow bandgap of 1.27 eV and a long carrier lifetime of 657.7 ns. Consequently, solar cells employing mixed 2D DJ 3AMP-based and 3D MA0.5FA0.5Pb0.5Sn0.5I3 (MA = methylammonium, FA = formamidinium) perovskite composites as light absorbers achieve enhanced efficiency and stability, giving a power conversion efficiency of 20.09% with a high open-circuit voltage of 0.88 V, a fill factor of 79.74%, and a short-circuit current density of 28.63 mA cm-2. The results provide an effective strategy to improve the performance of single-junction narrow-bandgap solar cells and, potentially, to give a highly efficient alternative to bottom solar cells in tandem devices.

10.
Adv Mater ; 32(33): e2002812, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32614510

RESUMEN

2D hybrid halide perovskites with the formula (A')2 (A)n -1 Pbn I3 n +1 have remarkable stability and promising efficiency in photovoltaic and optoelectronic devices, yet fundamental understanding of film formation, key to optimizing these devices, is lacking. Here, in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor film formation during spin-coating. This elucidates the general film formation mechanism of 2D halide perovskites during one-step spin-coating. There are three stages of film formation: sol-gel, oriented 3D, and 2D. Three precursor phases form during the sol-gel stage and transform to perovskite, first giving a highly oriented 3D-like phase at the air/liquid interface followed by subsequent nucleations forming slightly less oriented 2D perovskite. Furthermore, heating before crystallization leads to fewer nucleations and faster removal of the precursors, improving orientation. This outlines the primary causes of phase distribution and perpendicular orientation in 2D perovskite films and paves the way for rationally designed film fabrication techniques.

11.
Chem Sci ; 11(44): 12139-12148, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34094428

RESUMEN

Two-dimensional (2D) halide perovskites have great promise in optoelectronic devices because of their stability and optical tunability, but the subtle effects on the inorganic layer when modifying the organic spacer remain unclear. Here, we introduce two homologous series of Ruddlesden-Popper (RP) structures using the branched isobutylammonium (IBA) and isoamylammonium (IAA) cations with the general formula (RA)2(MA) n-1Pb n I3n+1 (RA = IBA, IAA; MA = methylammonium n = 1-4). Surprisingly, the IAA n = 2 member results in the first modulated 2D perovskite structure with a ripple with a periodicity of 50.6 Å occurring in the inorganic slab diagonally to the [101] direction of the basic unit cell. This leads to an increase of Pb-I-Pb angles along the direction of the wave. Generally, both series show larger in-plane bond angles resulting from the additional bulkiness of the spacers compensating for the MA's small size. Larger bond angles have been shown to decrease the bandgap which is seen here with the bulkier IBA leading to both larger in-plane angles and lower bandgaps except for n = 2, in which the modulated structure has a lower bandgap because of its larger Pb-I-Pb angles. Photo-response was tested for the n = 4 compounds and confirmed, signaling their potential use in solar cell devices. We made films using an MACl additive which showed good crystallinity and preferred orientation according to grazing-incidence wide-angle scattering (GIWAXS). As exemplar, the two n = 4 samples were employed in devices with champion efficiencies of 8.22% and 7.32% for IBA and IAA, respectively.

12.
J Am Chem Soc ; 141(27): 10661-10676, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246449

RESUMEN

Two-dimensional (2D) hybrid halide perovskites are promising in optoelectronic applications, particularly solar cells and light-emitting devices (LEDs), and for their increased stability as compared to 3D perovskites. Here, we report a new series of structures using propylammonium (PA+), which results in a series of Ruddlesden-Popper (RP) structures with the formula (PA)2(MA)n-1PbnI3n+1 (n = 3, 4) and a new homologous series of "step-like" (SL) structures where the PbI6 octahedra connect in a corner- and face-sharing motif with the general formula (PA)2m+4(MA)m-2Pb2m+1I7m+4 (m = 2, 3, 4). The RP structures show a blue-shift in bandgap for decreasing n (1.90 eV for n = 4 and 2.03 eV for n = 3), while the SL structures have an even greater blue-shift (2.53 eV for m = 4, 2.74 eV for m = 3, and 2.93 eV for m = 2). DFT calculations show that, while the RP structures are electronically 2D quantum wells, the SL structures are electronically 1D quantum wires with chains of corner-sharing octahedra "insulated" by blocks of face-sharing octahedra. Dark measurements for RP crystals show high resistivity perpendicular to the layers (1011 Ω cm) but a lower resistivity parallel to them (107 Ω cm). The SL crystals have varying resistivity in all three directions, confirming both RP and SL crystals' utility as anisotropic electronic materials. The RP structures show strong photoresponse, whereas the SL materials exhibit resistivity trends that are dominated by ionic transport and no photoresponse. Solar cells were made with n = 3 giving an efficiency of 7.04% (average 6.28 ± 0.65%) with negligible hysteresis.

13.
J Am Chem Soc ; 141(11): 4521-4525, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30848587

RESUMEN

(4NPEA)2PbI4 (4NPEA = 4-nitrophenylethylammonium) is the first 3 × 3 corrugated 2D organic-Pb/I perovskite. The nitro groups are involved in cation-cation and cation-iodide interactions. The structure contains both highly distorted and near-ideal PbI6 octahedra, consistent with the observation of two 207Pb NMR resonances, while the optical properties resemble those of other 2D perovskites with distorted PbI6 octahedra.


Asunto(s)
Compuestos de Amonio/química , Compuestos de Calcio/química , Fenómenos Ópticos , Óxidos/química , Titanio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular
14.
J Am Chem Soc ; 139(12): 4521-4531, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28257202

RESUMEN

The rhenium(V) oxo complex oxo(triphenylphosphine) (bis(3,5-di-tert-butyl-2-phenoxo)amido)rhenium(V), (ONOCat)ReO(PPh3), reacts with molecular oxygen to give triphenylphosphine oxide and the dimeric rhenium(VII) complex fac,anti-(ONOCat)Re(O)(µ-O)2Re(O)(ONOCat). The ONO ligand adopts an unusual fac geometry, presumably to maximize π donation to rhenium; strong π donation is substantiated by the intraligand bond distances (metrical oxidation state = -2.24(9)). Addition of the N-heterocyclic carbene ligand IMes to fac,anti-(ONOCat)Re(O)(µ-O)2Re(O)(ONOCat) cleaves the dimer into monomeric C1-symmetric fac-(ONOCat)ReO2(IMes). The monorhenium(VII) complex is deoxygenated by PMe2Ph to give the rhenium(V) compound (ONOCat)ReO(IMes), which can be independently prepared by ligand substitution of (ONOCat)ReO(PPh3). The degree of stereochemical rigidity exhibited by the dioxo compound, as established by dynamic NMR spectroscopy, excludes the intermediacy of mer-(ONOQ)ReVO2(IMes) in this oxygen atom transfer reaction. Thus, oxygen atom transfer takes place preferentially by direct reduction of the oxorhenium(VII) moiety (classical oxygen atom transfer) rather than through initial internal electron transfer and ligand-centered reduction of an oxorhenium(V)-iminoquinone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...