Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0295086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39159236

RESUMEN

Sustained compressive injury (SCI) in the brain is observed in numerous injury and pathological scenarios, including tumors, ischemic stroke, and traumatic brain injury-related tissue swelling. Sustained compressive injury is characterized by tissue loading over time, and currently, there are few in vitro models suitable to study neural cell responses to strain-dependent sustained compressive injury. Here, we present an in vitro model of sustained compressive neural injury via centrifugation. Spheroids were made from neonatal rat cortical cells seeded at 4000 cells/spheroid and cultured for 14 days in vitro. A subset of spheroids was centrifuged at 104, 209, 313 or 419 rads/s for 2 minutes. Modeling the physical deformation of the spheroids via finite element analyses, we found that spheroids centrifuged at the aforementioned angular velocities experienced pressures of 10, 38, 84 and 149 kPa, respectively, and compressive (resp. tensile) strains of 10% (5%), 18% (9%), 27% (14%) and 35% (18%), respectively. Quantification of LIVE-DEAD assay and Hoechst 33342 nuclear staining showed that centrifuged spheroids subjected to pressures above 10 kPa exhibited significantly higher DNA damage than control spheroids at 2, 8, and 24 hours post-injury. Immunohistochemistry of ß3-tubulin networks at 2, 8, and 24 hours post-centrifugation injury showed increasing degradation of microtubules over time with increasing strain. Our findings show that cellular injuries occur as a result of specific levels and timings of sustained tissue strains. This experimental SCI model provides a high throughput in vitro platform to examine cellular injury, to gain insights into brain injury that could be targeted with therapeutic strategies.


Asunto(s)
Supervivencia Celular , Neuritas , Esferoides Celulares , Animales , Esferoides Celulares/patología , Ratas , Neuritas/metabolismo , Neuritas/patología , Estrés Mecánico , Corteza Cerebral/patología , Células Cultivadas , Ratas Sprague-Dawley , Daño del ADN , Centrifugación
2.
Biomech Model Mechanobiol ; 23(4): 1179-1196, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970736

RESUMEN

Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids' shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids' strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Esferoides Celulares , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Esferoides Celulares/patología , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Modelos Biológicos , Humanos
3.
Lab Chip ; 21(23): 4586-4595, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34734621

RESUMEN

Three-dimensional brain cultures can facilitate the study of central nervous system function and disease, and one of the most important components that they present is neuronal activity on a network level. Here we demonstrate network activity in rodent cortical spheroids while maintaining the networks intact in their 3D state. Networks developed by nine days in culture and became more complex over time. To measure network activity, we imaged neurons in rat and mouse spheroids labelled with a calcium indicator dye, and in mouse spheroids expressing GCaMP. Network activity was evident when we electrically stimulated spheroids, was abolished with glutamatergic blockade, and was altered by GABAergic blockade or partial glutamatergic blockade. We quantified correlations and distances between somas with micron-scale spatial resolution. Spheroids seeded at as few as 4000 cells gave rise to emergent network events, including oscillations. These results are the first demonstration that self-assembled rat and mouse spheroids exhibit network activity consistent with in vivo network events. These results open the door to experiments on neuronal networks that require fewer animals and enable high throughput experiments on network-perturbing alterations in neurons and glia.


Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Ratas
4.
Sci Transl Med ; 13(580)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568516

RESUMEN

Christianson syndrome (CS), an X-linked neurological disorder characterized by postnatal attenuation of brain growth (postnatal microcephaly), is caused by mutations in SLC9A6, the gene encoding endosomal Na+/H+ exchanger 6 (NHE6). To hasten treatment development, we established induced pluripotent stem cell (iPSC) lines from patients with CS representing a mutational spectrum, as well as biologically related and isogenic control lines. We demonstrated that pathogenic mutations lead to loss of protein function by a variety of mechanisms: The majority of mutations caused loss of mRNA due to nonsense-mediated mRNA decay; however, a recurrent, missense mutation (the G383D mutation) had both loss-of-function and dominant-negative activities. Regardless of mutation, all patient-derived neurons demonstrated reduced neurite growth and arborization, likely underlying diminished postnatal brain growth in patients. Phenotype rescue strategies showed mutation-specific responses: A gene transfer strategy was effective in nonsense mutations, but not in the G383D mutation, wherein residual protein appeared to interfere with rescue. In contrast, application of exogenous trophic factors (BDNF or IGF-1) rescued arborization phenotypes across all mutations. These results may guide treatment development in CS, including gene therapy strategies wherein our data suggest that response to treatment may be dictated by the class of mutation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microcefalia , Ataxia , Epilepsia , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Discapacidad Intelectual , Microcefalia/genética , Mutación/genética , Neuronas , Trastornos de la Motilidad Ocular
5.
Biomater Res ; 22: 14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780613

RESUMEN

BACKGROUND: Successful nerve regeneration depends upon directed migration of morphologically specialized repair state Schwann cells across a nerve defect. Although several groups have studied directed migration of Schwann cells in response to chemical or topographic cues, the current understanding of how the mechanical environment influences migration remains largely understudied and incomplete. Therefore, the focus of this study was to evaluate Schwann cell migration and morphodynamics in the presence of stiffness gradients, which revealed that Schwann cells can follow extracellular gradients of increasing stiffness, in a form of directed migration termed durotaxis. METHODS: Polyacrylamide substrates were fabricated to mimic the range of stiffness found in peripheral nerve tissue. We assessed Schwann cell response to substrates that were either mechanically uniform or embedded with a shallow or steep stiffness gradient, respectively corresponding to the mechanical niche present during either the fluid phase or subsequent matrix phase of the peripheral nerve regeneration process. We examined cell migration (velocity and directionality) and morphology (elongation, spread area, nuclear aspect ratio, and cell process dynamics). We also characterized the surface morphology of Schwann cells by scanning electron microscopy. RESULTS: On laminin-coated polyacrylamide substrates embedded with either a shallow (∼0.04 kPa/mm) or steep (∼0.95 kPa/mm) stiffness gradient, Schwann cells displayed durotaxis, increasing both their speed and directionality along the gradient materials, fabricated with elastic moduli in the range found in peripheral nerve tissue. Uniquely and unlike cell behavior reported in other cell types, the durotactic response of Schwann cells was not dependent upon the slope of the gradient. When we examined whether durotaxis behavior was accompanied by a pro-regenerative Schwann cell phenotype, we observed altered cell morphology, including increases in spread area and the number, elongation, and branching of the cellular processes, on the steep but not the shallow gradient materials. This phenotype emerged within hours of the cells adhering to the materials and was sustained throughout the 24 hour duration of the experiment. Control experiments also showed that unlike most adherent cells, Schwann cells did not alter their morphology in response to uniform substrates of different stiffnesses. CONCLUSION: This study is notable in its report of durotaxis of cells in response to a stiffness gradient slope, which is greater than an order of magnitude less than reported elsewhere in the literature, suggesting Schwann cells are highly sensitive detectors of mechanical heterogeneity. Altogether, this work identifies durotaxis as a new migratory modality in Schwann cells, and further shows that the presence of a steep stiffness gradient can support a pro-regenerative cell morphology.

6.
J Neurosci Methods ; 299: 55-63, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28143748

RESUMEN

BACKGROUND: In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. NEW METHOD: We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. RESULTS: Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. COMPARISON WITH EXISTING METHOD(S): Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. CONCLUSIONS: The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders.


Asunto(s)
Capilares/fisiología , Células Endoteliales/fisiología , Neovascularización Fisiológica , Neuronas/fisiología , Esferoides Celulares/fisiología , Animales , Capilares/ultraestructura , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Células Endoteliales/ultraestructura , Ratones , Neuroglía/citología , Neuroglía/fisiología , Neuronas/citología , Ratas , Esferoides Celulares/ultraestructura
7.
Sci Rep ; 6: 33999, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27666089

RESUMEN

Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular ß-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated.

8.
Acta Biomater ; 39: 55-64, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142253

RESUMEN

UNLABELLED: Successful realization of the enormous potential of pluripotent stem cells in regenerative medicine demands the development of well-defined culture conditions. Maintenance of embryonic stem cells (ESCs) typically requires co-culture with feeder layer cells, generally mouse embryonic fibroblasts (MEFs). Concerns about xenogeneic pathogen contamination and immune reaction to feeder cells underlie the need for ensuring the safety and efficacy of future stem cell-based products through the development of a controlled culture environment. To gain insight into the effectiveness of MEF layers, here we have developed a biomimetic synthetic feeder layer (BSFL) that is acellular and replicates the stiffness and topography of MEFs. The mechanical properties of MEFs were measured using atomic force microscopy. The average Young's modulus of the MEF monolayers was replicated using tunable polyacrylamide (PA) gels. BSFLs replicated topographical features of the MEFs, including cellular, subcellular, and cytoskeletal features. On BSFLs, mouse ESCs adhered and formed compact round colonies; similar to on MEF controls but not on Flat PA. ESCs on BSFLs maintained their pluripotency and self-renewal across passages, formed embryoid bodies and differentiated into progenitors of the three germ layers. This acellular biomimetic synthetic feeder layer supports stem cell culture without requiring co-culture of live xenogeneic feeder cells, and provides a versatile, tailorable platform for investigating stem cell growth. STATEMENT OF SIGNIFICANCE: Embryonic stem cells have enormous potential to aid therapeutics, because they can renew themselves and become different cell types. This study addresses a key challenge for ESC use - growing them safely for human patients. ESCs typically grow with a feeder layer of mouse fibroblasts. Since patients have a risk of immune response to feeder layer cells, we have developed a material to mimic the feeder layer and eliminate this risk. We investigated the influence of feeder layer topography and stiffness on mouse ESCs. While the biomimetic synthetic feeder layer contains no live cells, it replicates the stiffness and topography of feeder layer cells. Significantly, ESCs grown on BSFLs retain their abilities to grow and become multiple cell types.


Asunto(s)
Materiales Biomiméticos/química , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias de Ratones/metabolismo , Resinas Acrílicas/química , Animales , Módulo de Elasticidad , Ratones , Células Madre Embrionarias de Ratones/citología
9.
Tissue Eng Part C Methods ; 21(12): 1274-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26414693

RESUMEN

There is a high demand for in vitro models of the central nervous system (CNS) to study neurological disorders, injuries, toxicity, and drug efficacy. Three-dimensional (3D) in vitro models can bridge the gap between traditional two-dimensional culture and animal models because they present an in vivo-like microenvironment in a tailorable experimental platform. Within the expanding variety of sophisticated 3D cultures, scaffold-free, self-assembled spheroid culture avoids the introduction of foreign materials and preserves the native cell populations and extracellular matrix types. In this study, we generated 3D spheroids with primary postnatal rat cortical cells using an accessible, size-controlled, reproducible, and cost-effective method. Neurons and glia formed laminin-containing 3D networks within the spheroids. The neurons were electrically active and formed circuitry through both excitatory and inhibitory synapses. The mechanical properties of the spheroids were in the range of brain tissue. These in vivo-like features of 3D cortical spheroids provide the potential for relevant and translatable investigations of the CNS in vitro.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Microambiente Celular , Neuronas/citología , Neuronas/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Animales , Ratas
10.
Tissue Eng Part C Methods ; 21(3): 292-302, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25128373

RESUMEN

Three-dimensional (3D) cell culture is an important tool that facilitates biological discoveries by bridging the divide between standard two-dimensional cell culture and the complex, high-cell-density in vivo environment. Typically, the internal structures of 3D tissue-engineered samples are visualized through an involved process of physical sectioning, immunostaining, imaging, and computational reconstruction. However, recent progress in tissue-clearing methods has improved optical-imaging-depth capabilities in whole embryos and brains by reducing tissue opacity and light scattering, thus decreasing the need for physical sectioning. In this study, we assessed the application of the recently published clearing techniques Clear(T2), Scale, and SeeDB to tissue-engineered neural spheres. We found that scaffold-free self-assembled adult hippocampal neural stem cell spheres of 100-µm diameter could be optically cleared and imaged using either Clear(T2) or Scale, while SeeDB only marginally improved imaging depth. The Clear(T2) protocol maintained sphere size, while Scale led to sample expansion, and SeeDB led to sample shrinkage. Additionally, using Clear(T2) we cleared and successfully imaged spheres of C6 glioma cells and spheres of primary cortical neurons. We conclude that Clear(T2) is the most effective protocol of those tested at clearing neural spheres of various cell types and could be applied to better understand neural cell interactions in 3D tissue-engineered samples.


Asunto(s)
Células-Madre Neurales/citología , Imagen Óptica , Óptica y Fotónica/métodos , Esferoides Celulares/citología , Ingeniería de Tejidos/métodos , Animales , Cadherinas/metabolismo , Forma de la Célula , Crioultramicrotomía , Laminina/metabolismo , Microscopía Confocal , Ratas
11.
J R Soc Interface ; 11(97): 20140247, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-24872498

RESUMEN

The mechanical interaction between Schwann cells (SCs) and their microenvironment is crucial for the development, maintenance and repair of the peripheral nervous system. In this paper, we present a detailed investigation on the mechanosensitivity of SCs across a physiologically relevant substrate stiffness range. Contrary to many other cell types, we find that the SC spreading area and cytoskeletal actin architecture were relatively insensitive to substrate stiffness with pronounced stress fibre formation across all moduli tested (0.24-4.80 kPa). Consistent with the presence of stress fibres, we found that SCs generated large surface tractions on stiff substrates and large, finite material deformations on soft substrates. When quantifying the three-dimensional characteristics of the SC traction profiles, we observed a significant contribution from the out-of-plane traction component, locally giving rise to rotational moments similar to those observed in mesenchymal embryonic fibroblasts. Taken together, these measurements provide the first set of quantitative biophysical metrics of how SCs interact with their physical microenvironment, which are anticipated to aid in the development of tissue engineering scaffolds designed to promote functional integration of SCs into post-injury in vivo environments.


Asunto(s)
Actinas/fisiología , Microambiente Celular/fisiología , Citoesqueleto/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Células de Schwann/citología , Células de Schwann/fisiología , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Simulación por Computador , Módulo de Elasticidad/fisiología , Fricción , Ratas , Estrés Mecánico , Propiedades de Superficie
12.
PLoS One ; 9(4): e90976, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740435

RESUMEN

Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.


Asunto(s)
Comunicación Celular , Mecanotransducción Celular , Microscopía/métodos , Algoritmos , Fibroblastos/citología , Imagenología Tridimensional , Neutrófilos/citología , Células de Schwann/citología
13.
Acta Biomater ; 9(7): 7158-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23557939

RESUMEN

The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the lengths of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after 5days in culture and aligned to bioinspired materials presenting soma and process features after only 17h in culture. The key findings of this study were: neurite response to underlying bioinspired topographical features was time dependent, with neurites aligned most strongly to materials presenting combinations of soma and process features at 5days, with higher than average density of either process or soma features, but at 17h they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies.


Asunto(s)
Materiales Biomiméticos/química , Núcleo Celular/fisiología , Mecanotransducción Celular/fisiología , Neuritas/fisiología , Neuritas/ultraestructura , Células de Schwann/citología , Células de Schwann/fisiología , Animales , Animales Recién Nacidos , Movimiento Celular/fisiología , Núcleo Celular/ultraestructura , Polaridad Celular/fisiología , Tamaño de la Célula , Células Cultivadas , Ratas
14.
J Neurosci Methods ; 214(2): 210-22, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384629

RESUMEN

A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neuritas/fisiología , Neuronas/citología , Animales , Células Cultivadas , Neuronas/fisiología
15.
J Neurosci Methods ; 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23253748

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

16.
PLoS One ; 6(9): e24316, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949703

RESUMEN

Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility.


Asunto(s)
Movimiento Celular/fisiología , Microscopía/métodos , Células de Schwann/fisiología , Imagen de Lapso de Tiempo/métodos , Algoritmos , Animales , Anisotropía , Técnicas de Cultivo de Célula , Células Cultivadas , Dimetilpolisiloxanos/metabolismo , Ratas , Células de Schwann/metabolismo , Nervio Ciático/citología , Factores de Tiempo
17.
ACS Appl Mater Interfaces ; 3(1): 16-21, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21142128

RESUMEN

Tailoring cell response on an electrode surface is essential in the application of neural interfaces. In this paper, a method of controlling neuron adhesion on the surface of an electrode was demonstrated using a conducting polymer composite as an electrode coating. The electrodeposited coating was functionalized further with biomolecules-of-interest (BOI), with their surface concentration controlled via repetition of carbodiimide chemistry. The result was an electrode surface that promoted localized adhesion of primary neurons, the density of which could be controlled quantitatively via changes in the number of layers of BOI added. Important to neural interfaces, it was found that additional layers of BOI caused an insignificant increase in the electrical impedance, especially when compared to the large drop in impedance upon coating of the electrode with the conducting polymer composite.


Asunto(s)
Materiales Biocompatibles/química , Neuronas/química , Polímeros/química , Adhesión Celular , Conductividad Eléctrica , Impedancia Eléctrica , Polilisina/química , Propiedades de Superficie
18.
Sci Eng Ethics ; 16(4): 749-51, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20853179

RESUMEN

What comprises 'data' varies from one institution to another based on the information which is deemed important by individual institutions. To effectively and efficiently produce, collect, and retain data, an organization develops specific defining characteristics of data to meet its informational needs. Procedures to maintain and retain knowledge among laboratory members and principal investigators will allow for improved efficiency of data collection. Optimization of communication, maintenance of inventories, record keeping, and updating relevant training programs are all critical to supporting the quality and integrity of a particular organization's data. Concurrent revisions to such procedures will ensure that the definition of data as well as the means by which it is collected and maintained remain appropriate to the needs of the individual organization.


Asunto(s)
Gestión de la Información , Laboratorios/organización & administración , Control de Formularios y Registros/métodos , Laboratorios/normas , Proyectos de Investigación/normas , Estados Unidos
19.
Annu Rev Biomed Eng ; 12: 203-31, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20438370

RESUMEN

In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.


Asunto(s)
Regeneración Nerviosa , Neuronas/fisiología , Neuronas/ultraestructura , Animales , Axones/fisiología , Axones/ultraestructura , Materiales Biocompatibles Revestidos , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Modelos Animales
20.
Ann Biomed Eng ; 38(6): 2210-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20440561

RESUMEN

Understanding the cues that guide axons and how we can optimize these cues to achieve directed neuronal growth is imperative for neural tissue engineering. Cells in the local environment influence neurons with a rich combination of cues. This study deconstructs the complex mixture of guidance cues by working at the biomimetic interface--isolating the topographical information presented by cells and determining its capacity to guide neurons. We generated replica materials presenting topographies of oriented astrocytes (ACs), endothelial cells (ECs), and Schwann cells (SCs) as well as computer-aided design materials inspired by the contours of these cells (bioinspired-CAD). These materials presented distinct topographies and anisotropies and in all cases were sufficient to guide neurons. Dorsal root ganglia (DRG) cells and neurites demonstrated the most directed response on bioinspired-CAD materials which presented anisotropic features with 90 degrees edges. DRG alignment was strongest on SC bioinspired-CAD materials followed by AC bioinspired-CAD materials, with more uniform orientation to EC bioinspired-CAD materials. Alignment on replicas was strongest on SC replica materials followed by AC and EC replicas. These results suggest that the topographies of anisotropic tissue structures are sufficient for neuronal guidance. This work is discussed in the context of feature dimensions, morphology, and guidepost hypotheses.


Asunto(s)
Regeneración Tisular Dirigida/métodos , Neuritas/fisiología , Neuritas/ultraestructura , Animales , Materiales Biomiméticos/química , Aumento de la Célula , Línea Celular , Proliferación Celular , Ensayo de Materiales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...