Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893843

RESUMEN

This paper explores the new potential strategy of using fine recycled aggregates (fRA) derived from waste 3D printed concrete (3DPC) as a substitute for cement in additive manufacturing. This study hypothesizes that fRA can optimize mixture design, reduce cement content, and contribute to sustainable construction practices. Experimental programs were conducted to evaluate the fresh and hardened properties, printability window, and buildability of 3DPC mixes containing fRA. Mixes with replacement rates of cement with fRA by 10 vol%, 20 vol%, 30 vol%, 40 vol%, and 50 vol% were produced. A comprehensive experimental protocol consisting of rheological studies (static and dynamic yield stress), dynamic elastic modulus determination (first 24 h of hydration), flexural and compressive strengths (2 d and 28 d), and an open porosity test was performed. The obtained results were verified by printing tests. In addition, an economic and environmental life cycle assessment (LCA) of the mixes was performed. The results indicate that up to 50 vol% cement replacement with fRA is feasible, albeit with some technical drawbacks. While fRA incorporation enhances sustainability by reducing CO2 emissions and material costs, it adversely affects the printability window, green strength, setting time, and mechanical properties, particularly in the initial curing stages. Therefore, with higher replacement rates (above 20 vol%), potential optimization efforts are needed to mitigate drawbacks such as reduced green strength and buildability. Notably, replacement rates of up to 20 vol% can be successfully used without compromising the overall material properties or altering the mixture design. The LCA analysis shows that reducing the cement content and increasing the fRA addition results in a significant reduction in mix cost (up to 24%) and a substantial decrease in equivalent CO2 emissions (up to 48%). In conclusion, this study underscores the potential of fRA as a sustainable alternative to cement in 3D printed concrete.

2.
Chempluschem ; : e202400186, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713672

RESUMEN

In the field of anticancer therapy study it is of great interest to find effective G-quadruplex ligands which may be of potential use in medical treatment or cancer prevention. Since among the compounds of natural origin, flavonoids have attracted notable attention because of their unique properties and promising therapeutic applications, an interesting question was to identify the flavonoid structural features that could provide effective binding properties toward G-quadruplex. By using electrospray ionization mass spectrometry, followed by the survival yield method, it has been shown that the flavonoid molecules which contain an available C4=O carbonyl group form more stable adducts with G-tetrads than the other ones. Molecular docking has shown that C4=O carbonyl group can be a source of hydrogen bonds and/or π-stacking interactions. Therefore, the flavonoid molecules which contain an available C4=O carbonyl group can be regarded as good binders of G-quadruplexes.

3.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38399388

RESUMEN

In the contemporary era, the exploration of machine learning (ML) has gained widespread attention and is being leveraged to augment traditional methodologies in quantitative structure-activity relationship (QSAR) investigations. The principal objective of this research was to assess the anticancer potential of colchicine-based compounds across five distinct cell lines. This research endeavor ultimately sought to construct ML models proficient in forecasting anticancer activity as quantified by the IC50 value, while concurrently generating innovative colchicine-derived compounds. The resistance index (RI) is computed to evaluate the drug resistance exhibited by LoVo/DX cells relative to LoVo cancer cell lines. Meanwhile, the selectivity index (SI) is computed to determine the potential of a compound to demonstrate superior efficacy against tumor cells compared to its toxicity against normal cells, such as BALB/3T3. We introduce a novel ML system adept at recommending novel chemical structures predicated on known anticancer activity. Our investigation entailed the assessment of inhibitory capabilities across five cell lines, employing predictive models utilizing various algorithms, including random forest, decision tree, support vector machines, k-nearest neighbors, and multiple linear regression. The most proficient model, as determined by quality metrics, was employed to predict the anticancer activity of novel colchicine-based compounds. This methodological approach yielded the establishment of a library encompassing new colchicine-based compounds, each assigned an IC50 value. Additionally, this study resulted in the development of a validated predictive model, capable of reasonably estimating IC50 values based on molecular structure input.

4.
Rapid Commun Mass Spectrom ; 37(24): e9661, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37953539

RESUMEN

RATIONALE: Cytosine and its conjugates are prone to form protonated, triply-bonded dimers. Therefore, the nucleic-acid cytosine-rich sequence forms the four-stranded noncanonical secondary structure known as the intercalated motif (i-motif). This process has resulted in studies on cytosine protonated dimers. This communication focuses on the protonated dimers of cytosine and its nucleoside using the survival yield (SY) method and quantum mechanics calculations. METHODS: To obtain the precursor ion fragmentation curve, the plot of SY against Ecomδ , the product ion spectra of the protonated dimers were obtained using a Waters/Micromass Q-TOF Premier mass spectrometer. Quantum mechanics calculations were performed using GAUSSIAN 16, and full geometry optimizations and energy calculations were performed within the density functional theory framework at B3LYP/6-31G(d,p). RESULTS: The precursor ion fragmentation curve allowed the rating of the gas-phase stabilities of the analyzed protonated dimers. Substitution of sugar moiety at N1 cytosine atom decreased the gas-phase stabilities of the protonated dimers. The deoxycytidine dimer was found to be more stable than the cytidine dimer and cytidine-deoxycytidine dimer. Quantum chemical calculations indicated that cytosine aminohydroxy tautomer may be involved in the formation of protonated cytosine-cytosine nucleoside dimers but not in the formation of cytosine dimers. CONCLUSIONS: The results obtained for nucleoside dimers indicated that the SY method may reflect the i-motif stabilities observed under physiological conditions. Therefore, the analysis of other protonated dimers of variously substituted cytosine-cytosine nucleoside using the SY method may be important to study the effect of cytosine substitution on the i-motif stabilities. Cytosine tautomer containing C2-OH… N(2H)-C4 moiety may be involved in the formation of protonated cytosine-cytosine nucleoside dimers.


Asunto(s)
Citidina , Protones , Citidina/química , Citosina/química , Desoxicitidina
5.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511110

RESUMEN

Artificial intelligence (AI) is widely explored nowadays, and it gives opportunities to enhance classical approaches in QSAR studies. The aim of this study was to investigate the cytoprotective activity parameter under oxidative stress conditions for indole-based structures, with the ultimate goal of developing AI models capable of predicting cytoprotective activity and generating novel indole-based compounds. We propose a new AI system capable of suggesting new chemical structures based on some known cytoprotective activity. Cytoprotective activity prediction models, employing algorithms such as random forest, decision tree, support vector machines, K-nearest neighbors, and multiple linear regression, were built, and the best (based on quality measurements) was used to make predictions. Finally, the experimental evaluation of the computational results was undertaken in vitro. The proposed methodology resulted in the creation of a library of new indole-based compounds with assigned cytoprotective activity. The other outcome of this study was the development of a validated predictive model capable of estimating cytoprotective activity to a certain extent using molecular structure as input, supported by experimental confirmation.


Asunto(s)
Algoritmos , Inteligencia Artificial , Estructura Molecular , Estrés Oxidativo , Indoles/farmacología
6.
Amino Acids ; 55(9): 1073-1082, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37432478

RESUMEN

In this study, we subjected 5,5-diethoxy-4-oxopent-2-enal (DOPE), a model amino acids cross-linking reagent, to reactions with N-acetylcysteine (Ac-Cys) and Nα-acetyllysine (Ac-Lys), and identified three pyrrole cross-links. The compounds were isolated and their structures were rigorously determined by spectrometric and spectroscopic methods, including 2D NMR experiments. The use of 2D NMR spectroscopy was crucial to determine the position of the substituents in the pyrrole rings. The products were identified as 2,4-, 2,3-, and 2,5-substituted pyrroles. The data obtained from their structural characterisation can help similar studies on amino acids modifications induced by analogous bifunctional carbonyl compounds. Our results show that the study of pathways in which model electrophiles modify amino acids may be helpful for similar studies dealing with identification of structural changes in cysteine- and lysine-containing proteins associated with oxidative stress.


Asunto(s)
Cisteína , Lisina , Cisteína/química , Lisina/química , Pirroles , Aminoácidos/química , Isoformas de Proteínas , Aminas , Espectroscopía de Resonancia Magnética , Concentración de Iones de Hidrógeno
7.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902355

RESUMEN

The reactions of vinyl arenes with hydrodisiloxanes in the presence of sodium triethylborohydride were studied using experimental and computational methods. The expected hydrosilylation products were not detected because triethylborohydrides did not exhibit the catalytic activity observed in previous studies; instead, the product of formal silylation with dimethylsilane was identified, and triethylborohydride was consumed in stoichiometric amounts. In this article, the mechanism of the reaction is described in detail, with due consideration given to the conformational freedom of important intermediates and the two-dimensional curvature of the potential energy hypersurface cross sections. A simple way to reestablish the catalytic character of the transformation was identified and explained with reference to its mechanism. The reaction presented here is an example of the application of a simple transition-metal-free catalyst in the synthesis of silylation products, with flammable gaseous reagents replaced by a more convenient silane surrogate.

8.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675273

RESUMEN

Drug design with machine learning support can speed up new drug discoveries. While current databases of known compounds are smaller in magnitude (approximately 108), the number of small drug-like molecules is estimated to be between 1023 and 1060. The use of molecular docking algorithms can help in new drug development by sieving out the worst drug-receptor complexes. New chemical spaces can be efficiently searched with the application of artificial intelligence. From that, new structures can be proposed. The research proposed aims to create new chemical structures supported by a deep neural network that will possess an affinity to the selected protein domains. Transferring chemical structures into SELFIES codes helped us pass chemical information to a neural network. On the basis of vectorized SELFIES, new chemical structures can be created. With the use of the created neural network, novel compounds that are chemically sensible can be generated. Newly created chemical structures are sieved by the quantitative estimation of the drug-likeness descriptor, Lipinski's rule of 5, and the synthetic Bayesian accessibility classifier score. The affinity to selected protein domains was verified with the use of the AutoDock tool. As per the results, we obtained the structures that possess an affinity to the selected protein domains, namely PDB IDs 7NPC, 7NP5, and 7KXD.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Simulación del Acoplamiento Molecular , Teorema de Bayes , Dominios Proteicos , Diseño de Fármacos
9.
Chem Commun (Camb) ; 58(100): 13979-13982, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458694

RESUMEN

Sodium trialkylborohydrides were found to be initiators of selective hydrogermylation of aromatic alkenes. Addition of phenylgermane and diphenylgermane in the presence of 10 mol% of NaHB(sec-Bu)3 proceeded in a highly selective manner to give - in contrast to the analogous hydrosilylation process - ß-germylated products. The nature of this process was explained with the aid of DFT calculations and it was proposed that the mechanism proceeds via a trisubstituted germanide anion whose attack on the terminal vinyl carbon is the source of selectivity.


Asunto(s)
Alquenos , Teoría Funcional de la Densidad , Aniones
10.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080169

RESUMEN

Herein, we present the application of fluorinated carbohydrate-derived building blocks for α-hydroxy ß-fluoro/ß-trifluoromethyl and unsaturated phosphonates synthesis. Pudovik and Horner-Wadsworth-Emmons reactions were applied to achieve this goal. The proposed pathway of the key reactions is supported by the experimental results, as well as quantum chemical calculations. The structure of the products was established by spectroscopic (1D, 2D NMR) and spectrometric (MS) techniques. Based on our data received, we claim that the progress of the Pudovik and HWE reactions is significantly influenced by the acidic protons present in the molecules as assessed by pKa values of the reagent.


Asunto(s)
Organofosfonatos , Carbohidratos , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Organofosfonatos/química , Estereoisomerismo
11.
Molecules ; 27(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35889430

RESUMEN

A number of imines, including 12 new compounds, previously not reported in the literature, derived from variously fluorinated benzaldehydes and different anilines or chiral benzylamines were synthesized by a solvent-free mechanochemical method, which was based on the manual grinding of equimolar amounts of the substrates at the room temperature. In a very short reaction time of only 15 min, the method produced the expected products with good-to-excellent yields. The yields were comparable or significantly higher than those reported in the literature for the imines synthesized by other methods. Importantly, the conditions used for the reactions with aniline derivatives also resulted in the high yields of imines obtained from chiral benzylamines, and can be extended to the synthesis with other similar amines. Structures of all imines were confirmed by NMR spectroscopy: 1H, 13C and 19F. For four compounds, X-ray structures were also obtained. The synthetic approach presented in this paper contributes to the prevention of environmental pollution and can be easily extended for larger-scale syntheses. The mechanochemical solvent-free method provides a convenient strategy particularly useful for the preparation of fluorinated imines being versatile intermediates or starting material in the synthesis of drugs and other fine chemicals.


Asunto(s)
Aminas , Iminas , Aminas/química , Benzaldehídos , Bencilaminas , Iminas/química , Espectroscopía de Resonancia Magnética
12.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807416

RESUMEN

The application of DFT computational method (B3LYP/6-311++G(d,p)) to mono- and poly(CF3)substituted naphthalene derivatives helps to study changes in the electronic properties of these compounds under the influence of 11 substituents (-Br, -CF3, -CH3, -CHO, -Cl, -CN, -F, -NH2, -NMe2, -NO2, and -OH) to confront substituent effects in naphthalene with an analogous situation in benzene. This paper shows the dependencies of theoretically calculated SESE (Substituent Effect Stabilization Energy) values on empirically determined, well-defined Hammett-type constants (σp, σm, R, and F). Described poly(CF3)substituted derivatives of naphthalene are, so far, the most sensitive molecular probes for the substituent effects in the aromatic system. The presence of the trifluoromethyl groups of such an expressive nature significantly increases the sensitivity of the SESE to changes caused by another substitution. Further, the more -CF3 groups are attached to the naphthalene ring, the more sensitive the probe is. Certain groups of probes show additivity of sensitivity: the obtained sensitivity relates to the sum of the sensitivities of the mono(CF3)substituted probes.


Asunto(s)
Benceno , Sondas Moleculares , Naftalenos
13.
J Am Soc Mass Spectrom ; 33(8): 1474-1479, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35796751

RESUMEN

Gas-phase decompositions of magnesium complexes with adenosine-5'-triphosphate (ATP) and adenosine-5'-diphosphate (ADP) were studied by using electrospray ionization-collision-induced dissociation-tandem mass spectrometry, in the negative ion mode. The loss of internal ribose residue was observed and was found to occur directly from the [ADP-3H+Mg]- ion. The occurrence of this process indicates the presence of a strong phosphate-Mg-adenine interaction. The performed quantum mechanics calculations confirmed the occurrence of this interaction in the [ADP-3H+Mg]- ion, namely the presence of Mg-N7 bond and hydrogen bond between the phosphate oxygen atom and amino group. Although the finding concerns the gas phase, it indicates that phosphate-Mg-adenine interaction may be also of importance for biological processes. The loss of an internal ribose residue was also observed for calcium and zinc complexes with ATP/ADP as well as for magnesium complexes with guanosine-5'-triphosphate (GTP) or guanosine-5'-diphosphate (GDP). Therefore, it is reasonable to conclude that the presence of the phosphate-metal-nucleobase interaction is a feature of gas phase [NDP-3H+metal]- ion (NDP, nucleoside-5'-diphosphate) and may also be important for biological processes.


Asunto(s)
Fosfatos , Ribosa , Adenina , Adenosina , Adenosina Difosfato/química , Adenosina Difosfato/farmacología , Adenosina Trifosfato , Difosfatos , Guanosina , Guanosina Difosfato , Guanosina Trifosfato , Magnesio/farmacología
14.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336359

RESUMEN

This article discusses the problem of vibrations during machining. The manufacturing process of generator turbine blades is highly complex. Machining using Computerized Numerical Control (CNC) requires low cutting parameters in order to avoid vibration problems. However, even under these conditions, the surface quality and accuracy of the manufactured objects suffer from high levels of vibrations. Hence, the aim of this research is to counteract this phenomenon. Basic issues related to vibration problems will also be also discussed and a short review of currently available solutions for both active and passive vibration monitoring during machining will be presented. The authors developed a method which does not require any additional equipment other than modified CNC code. The proposed method can be applied to any CNC machine, and is especially suitable for lathes. The method seeks to eradicate the phenomenon of vibrations by providing enhanced control through Input Shaping Control (ISC). For this purpose, the authors present a method for modeling the machining process and design an ISC filter; the model is then implemented in the Matlab and Simulink environment. The last part of the article presents the results, together with a discussion, and includes a brief summary.

15.
Materials (Basel) ; 14(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34947238

RESUMEN

Few studies have focused on determining the Young's modulus of 3D printed structures. This study presents the results of experimental investigations of Young's modulus of a 3D printed mortar. Specimens were prepared in four different ways to investigate possible application of different methods for 3D printed structures. Study determines the influence of the number of layers on mechanical properties of printed samples. Results have shown a strong statistical correlation between the number of layers and value of Young's modulus. The compressive strength and Young's modulus reduction compared to standard cylindrical sample were up to 43.1% and 19.8%, respectively. Results of the study shed light on the differences between the current standard specimen used for determination of Young's modulus and the specimen prepared by 3D printing. The community should discuss the problem of standardization of test methods in view of visible differences between different types of specimens.

16.
Materials (Basel) ; 14(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068444

RESUMEN

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.

17.
Eur J Mass Spectrom (Chichester) ; 27(2-4): 101-106, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34187348

RESUMEN

Alkali metal chloroaurates(III) were analysed by laser desorption ionization mass spectrometry. Among a number of generated gas-phase ionic clusters, the unusual ions [MAu2Cl5]- (were M stands for Na, K, Rb, Cs) were detected. The spectra of metastable ions and quantum mechanics calculations show the presence of unprecedented Au(I)-Au(II) interactions in the clusters.

18.
J Pharm Anal ; 11(4): 383-397, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33842018

RESUMEN

Coronaviruses are dangerous human and animal pathogens. The newly identified coronavirus SARS-CoV-2 is the causative agent of COVID-19 outbreak, which is a real threat to human health and life. The world has been struggling with this epidemic for about a year, yet there are still no targeted drugs and effective treatments are very limited. Due to the long process of developing new drugs, reposition of existing ones is one of the best ways to deal with an epidemic of emergency infectious diseases. Among the existing drugs, there are candidates potentially able to inhibit the SARS-CoV-2 replication, and thus inhibit the infection of the virus. Some therapeutics target several proteins, and many diseases share molecular paths. In such cases, the use of existing pharmaceuticals for more than one purpose can reduce the time needed to design new drugs. The aim of this review was to analyze the key targets of viral infection and potential drugs acting on them, as well as to discuss various strategies and therapeutic approaches, including the possible use of natural products. We highlighted the approach based on increasing the involvement of human deaminases, particularly APOBEC deaminases in editing of SARS-CoV-2 RNA. This can reduce the cytosine content in the viral genome, leading to the loss of its integrity. We also indicated the nucleic acid technologies as potential approaches for COVID-19 treatment. Among numerous promising natural products, we pointed out curcumin and cannabidiol as good candidates for being anti-SARS-CoV-2 agents.

19.
Org Biomol Chem ; 19(13): 3004-3015, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885554

RESUMEN

The addition of hydroboranes across several unsaturated moieties is a universal synthetic tool for the reduction or functionalization of unsaturated moieties. Given the sustainable nature of this process, the development of more environmentally-benign approaches (main-group catalysis or uncatalysed approaches) for hydroboration has gained considerable recent momentum. The present paper examines both catalyst-free and KF-mediated hydroboration of carbonyl compounds with the use of quantum-chemical methods. The results of computations for several potential reaction pathways are juxtaposed with experiment-based calculations, which leads to stepwise mechanisms and energy profiles for the reactions of pinacolborane with benzaldehyde and acetophenone (in the presence of KF). For each step of these reactions, we provide an accurate description of the geometric and electronic structures of corresponding stationary points. Five different levels of theory are employed to select the most applicable theoretical approach and develop a computational protocol for further research. Upon selection of the best-performing methods, larger molecular systems are studied to explore possible more complex pathways at the M06-2X/6-311++G(2d,p) and ωB97XD/6-311++G(2d,p) levels of theory, which brings up multi-pathway, overlapping catalytic cycles. The mechanism of solvent-free, catalyst-free hydroboration of aldehydes is also revisited through the prism of the elaborated methodology, which leads to a whole new perspective on the pathways of this and similar reactions, with a multimolecular cascade of hydride transfers being more energetically favoured than a four-membered transition state.

20.
Materials (Basel) ; 15(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009250

RESUMEN

This study determines the effect of spent garnet as a replacement for natural sand in 3D-printed mortar at early ages. Five mixes with different spent garnet amounts were prepared (0%, 25%, 50%, 75% and 100% by volume). The ratio of binder to aggregate remained unchanged. In all mixes the water/binder ratio was assumed as a constant value of 0.375. Tests were performed to confirm the printability of the mix (a path quality test using a gantry robot with an extruder). Determinations of key buildability properties of the mix (green strength and Young's Modulus) during uniaxial compressive strength at 15 min, 30 min and 45 min after adding water were conducted. A hydraulic press and the GOM ARAMIS precision image analysis system were used to conduct the study. The results showed that an increase in spent garnet content caused a decrease in green strength and Young's Modulus (up to 69.91% and 80.37%, respectively). It was found that to maintain proper buildability, the recommended maximum replacement rate of natural sand with garnet is 50%. This research contributes new knowledge in terms of using recycled waste in the 3D printing technology of cementitious materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...