Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(38): e2205691119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095189

RESUMEN

The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Péptidos y Proteínas de Señalización Intracelular , Proteína de la Leucemia Mieloide-Linfoide , Nucleosomas , Ubiquitinación , Microscopía por Crioelectrón , N-Metiltransferasa de Histona-Lisina/química , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Nucleosomas/enzimología , Unión Proteica
2.
Cell ; 176(6): 1490-1501.e12, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30765112

RESUMEN

Methylation of histone H3 K79 by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B K120 (H2B-Ub) and is an example of histone modification cross-talk that is conserved from yeast to humans. We report here cryo-EM structures of Dot1L bound to ubiquitinated nucleosome that show how H2B-Ub stimulates Dot1L activity and reveal a role for the histone H4 tail in positioning Dot1L. We find that contacts mediated by Dot1L and the H4 tail induce a conformational change in the globular core of histone H3 that reorients K79 from an inaccessible position, thus enabling this side chain to insert into the active site in a position primed for catalysis. Our study provides a comprehensive mechanism of cross-talk between histone ubiquitination and methylation and reveals structural plasticity in histones that makes it possible for histone-modifying enzymes to access residues within the nucleosome core.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Dominio Catalítico , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/química , Histonas/genética , Humanos , Metilación , Modelos Moleculares , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Receptor Cross-Talk , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Xenopus laevis
3.
EMBO Rep ; 18(2): 264-279, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27974378

RESUMEN

The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.


Asunto(s)
Proteínas Fúngicas/química , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
4.
Gene ; 612: 49-54, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27593562

RESUMEN

Circularized oligonucleotides, or coligos, were previously found to serve as RNA polymerase III (Pol III) templates in vitro and in human tissue culture cells. Here we randomized the 12-nucleotide larger loop (L-loop) of a well characterized coligo and found unexpectedly that in vitro transcription by FLAG-Pol III was not significantly affected. This observation allowed us to test the variable of coligo L-loop size separately from the variable of its sequence. Transcription efficiency increased with L-loop size from 3 to 12 nucleotides of randomized sequence, and the smallest loop forced initiation to move into the stem region. To test further the need for any specific sequence we compared seven nucleotide L-loops composed of random, abasic and abasic-acyclic nucleotides, and all supported transcription by Pol III. Transcription of a series of coligos containing twelve contiguous randomized nucleotides placed at different locations within the coligo structure provided further evidence that the stem-loop junction structure is important for precise initiation. Nearly the same transcript pattern was formed in vitro by Pol III from yeast and human cells. Overall, these experiments support structure, rather than L-loop sequence, as the major determinant of coligo transcription initiation by Pol III.


Asunto(s)
ADN/metabolismo , ARN Polimerasa III/biosíntesis , Células HEK293 , Humanos , Estructura Secundaria de Proteína
5.
Mol Cell ; 64(6): 1135-1143, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27867008

RESUMEN

RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle.


Asunto(s)
ADN/química , Subunidades de Proteína/química , ARN Polimerasa I/química , ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , ARN/genética , ARN/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/aislamiento & purificación , ARN Polimerasa I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Transcription ; 7(4): 127-32, 2016 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-27327079

RESUMEN

Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses.


Asunto(s)
Sitios de Unión , Secuencia Conservada , Complejos Multiproteicos/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa I/metabolismo , Iniciación de la Transcripción Genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa I/química , ARN Polimerasa III/química , Especificidad por Sustrato , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/metabolismo
7.
FEBS J ; 283(15): 2811-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27059519

RESUMEN

Electron cryomicroscopy reconstructions of elongating RNA polymerase (Pol) III at 3.9 Å resolution and of unbound Pol III (apo Pol III) in two distinct conformations at 4.6 Å and 4.7 Å resolution allow the construction of complete atomic models of Pol III and provide new functional insights into the adaption of Pol III to fulfill its specific transcription tasks.


Asunto(s)
ARN Polimerasa III/química , Transcripción Genética , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , ARN Polimerasa III/antagonistas & inhibidores , ARN Polimerasa III/metabolismo , ARN Polimerasa III/ultraestructura
8.
PLoS One ; 11(1): e0146457, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26745716

RESUMEN

The Rvb1/Rvb2 complex is an essential component of many cellular pathways. The Rvb1/Rvb2 complex forms a dodecameric assembly where six copies of each subunit form two heterohexameric rings. However, due to conformational variability, the way the two rings pack together is still not fully understood. Here, we present the crystal structure and two cryo-electron microscopy reconstructions of the dodecameric, full-length Rvb1/Rvb2 complex, all showing that the interaction between the two heterohexameric rings is mediated through the Rvb1/Rvb2-specific domain II. Two conformations of the Rvb1/Rvb2 dodecamer are present in solution: a stretched conformation also present in the crystal, and a compact conformation. Novel asymmetric features observed in the reconstruction of the compact conformation provide additional insight into the plasticity of the Rvb1/Rvb2 complex.


Asunto(s)
Chaetomium/enzimología , ADN Helicasas/química , Proteínas de Unión al ADN/química , Proteínas Fúngicas/química , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
9.
Nature ; 528(7581): 231-6, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26605533

RESUMEN

Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.


Asunto(s)
Modelos Moleculares , ARN Polimerasa III/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Microscopía por Crioelectrón , Unión Proteica , Estructura Terciaria de Proteína
10.
EMBO J ; 31(2): 279-90, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22085934

RESUMEN

The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Caperuzas de ARN/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Caperuzas de ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...