RESUMEN
TFF3 is a typical secretory poplypeptide of mucous epithelia belonging to the trefoil factor family (TFF) of lectins. In the intestine, respiratory tract, and saliva, TFF3 mainly exists as a high-molecular-mass complex with IgG Fc binding protein (FCGBP), which is indicative of a role in mucosal innate immunity. For the first time, we identified different forms of TFF3 in the endocervix, i.e., monomeric and homodimeric TFF3, as well as a high-molecular-mass TFF3-FCGBP complex; the latter also exists in a hardly soluble form. Immunohistochemistry co-localized TFF3 and FCGBP. Expression analyses of endocervical and post-menopausal vaginal specimens revealed a lack of mucin and TFF3 transcripts in the vaginal specimens. In contrast, genes encoding other typical components of the innate immune defense were expressed in both the endocervix and vagina. Of note, FCGBP is possibly fucosylated. Endocervical specimens from transgender individuals after hormonal therapy showed diminished expression, particularly of FCGBP. Furthermore, mucus swabs from the endocervix and vagina were analyzed concerning TFF3, FCGBP, and lysozyme. It was the aim of this study to illuminate several aspects of the cervico-vaginal innate immune barrier, which is clinically relevant as bacterial and viral infections are also linked to infertility, pre-term birth and cervical cancer.
Asunto(s)
Cuello del Útero , Mucinas , Vagina , Femenino , Humanos , Proteínas Portadoras , Moléculas de Adhesión Celular/metabolismo , Cuello del Útero/inmunología , Inmunidad Innata , Inmunoglobulina G/metabolismo , Mucinas/metabolismo , Factor Trefoil-2/metabolismo , Factor Trefoil-3/genética , Factor Trefoil-3/metabolismo , Vagina/inmunologíaRESUMEN
Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).
Asunto(s)
Intestinos , Animales , Ratones , Duodeno , Colon , Animales Salvajes , Transporte Biológico , Factor Trefoil-1/genéticaRESUMEN
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Asunto(s)
Lectinas , Estómago , Factor Trefoil-2 , Animales , Humanos , Ratones , Mucinas/genética , Mucinas/metabolismo , Páncreas/metabolismo , Péptidos/química , Estómago/química , Porcinos , Factor Trefoil-2/metabolismoRESUMEN
The polypeptide TFF3 belongs to the trefoil factor family (TFF) of lectins. TFF3 is typically secreted from mucous epithelia together with mucins. Both intestinal and salivary TFF3 mainly exist as disulfide-linked heterodimers with IgG Fc binding protein (FCGBP). Here, we investigated bronchial tissue specimens, bronchial secretions, and bronchoalveolar lavage (BAL) fluid from patients with a chronic obstructive pulmonary disease (COPD) background by fast protein liquid chromatography and proteomics. For the first time, we identified different molecular forms of TFF3 in the lung. The high-molecular mass form represents TFF3-FCGBP oligomers, whereas the low-molecular mass forms are homodimeric and monomeric TFF3 with possibly anti-apoptotic activities. In addition, disulfide-linked TFF3 heterodimers with an Mr of about 60k and 30k were detected in both bronchial secretions and BAL fluid. In these liquids, TFF3 is partly N-terminally truncated probably by neutrophil elastase cleavage. TFF3-FCGBP is likely involved in the mucosal innate immune defense against microbial infections. We discuss a hypothetical model how TFF3 might control FCGBP oligomerization. Furthermore, we did not find indications for interactions of TFF3-FCGBP with DMBT1gp340 or the mucin MUC5AC, glycoproteins involved in mucosal innate immunity. Surprisingly, bronchial MUC5AC appeared to be degraded when compared with gastric MUC5AC.
Asunto(s)
Proteínas Portadoras , Mucinas , Humanos , Bronquios/metabolismo , Moléculas de Adhesión Celular/metabolismo , Disulfuros/metabolismo , Inmunoglobulina G/metabolismo , Mucinas/metabolismo , Factor Trefoil-2/metabolismo , Factor Trefoil-3/metabolismo , Fragmentos Fc de InmunoglobulinasRESUMEN
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Epitelio/patología , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Humanos , Lectinas , Neoplasias Gástricas/patología , Factor Trefoil-1RESUMEN
Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.
Asunto(s)
Bacterias/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Microbiota , Animales , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , RatonesRESUMEN
PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 ) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.
Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes , Ondas de RadioRESUMEN
Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.
Asunto(s)
Esófago/inmunología , Inmunidad Innata , Boca/inmunología , Proteínas y Péptidos Salivales/inmunología , Factores Trefoil/inmunología , Proteínas de Unión al Calcio/inmunología , Moléculas de Adhesión Celular/inmunología , Proteínas de Unión al ADN/inmunología , Humanos , Proteínas Supresoras de Tumor/inmunologíaRESUMEN
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Asunto(s)
Inflamación/metabolismo , Inflamación/patología , Factores Trefoil/metabolismo , Animales , Colon/patología , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología , Factores Trefoil/químicaRESUMEN
Mucous epithelia are protected by complex mucus barrier layers, which are part of the innate immune defense. Trefoil factor family peptides TFF1, TFF2, and TFF3 have lectin activities and are predominantly co-secreted together with mucins from these epithelia. TFF1 and TFF2 are mainly expressed in the gastric mucosa, whereas TFF3 is widely secreted from most mucous epithelia and their glands. TFF1 and TFF3 consist of a single TFF domain and an additional free 7th cysteine residue, whereas TFF2 contains two TFF domains. Systematic analyses of the molecular forms of TFFs gave new insights into their diverse molecular functions. TFF1 mainly exists as a monomer with an unusual free thiol group and only minor amounts form a disulfide-linked homodimer as well as heterodimers with gastrokine-2 and IgG-Fc-binding protein (FCGBP). TFF3 mainly forms a heterodimer with FCGBP in vivo, but also binds Deleted in Malignant Brain Tumors/gp340 (DMBT1gp340) in vitro. In contrast, TFF2 binds as a lectin to a conserved O-linked carbohydrate moiety of the mucin MUC6. Both FCGBP and DMBT1gp340 are secreted by most mucous epithelia and their glands and are involved in mucosal innate immunity. Thus, a new picture emerged pointing to functions of TFF3-FCGBP (and TFF1-FCGBP) for mucosal innate immune defense, e.g. supporting the clearing of the microorganisms. Such a function could be well be supported by DMBT1gp340. In contrast, the TFF2/MUC6 lectin complex probably physically stabilizes the inner adherent gastric mucus layer. Furthermore, there are indications that TFF3- FCGBP might also play a role in the blood vessels.
Asunto(s)
Factores Trefoil , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Humanos , Inmunidad Innata , Péptidos/metabolismo , Factor Trefoil-1/metabolismo , Factor Trefoil-2 , Factores Trefoil/metabolismo , Proteínas Supresoras de TumorRESUMEN
PURPOSE: To implement a modular, flexible, open-source hardware configuration for parallel transmission (pTx) experiments on medical implant safety and to demonstrate real-time mitigation strategies for radio frequency (RF) induced implant heating based on sensor measurements. METHODS: The hardware comprises a home-built 8-channel pTx system (scalable to 32-channels), wideband power amplifiers and a positioning system with submillimeter precision. The orthogonal projection (OP) method is used to mitigate RF induced tip heating and to maintain sufficient B1+ for imaging. Experiments are performed at 297MHz and inside a clinical 3T MRI using 8-channel pTx RF coils, a guidewire substitute inside a phantom with attached thermistor and time-domain E-field probes. RESULTS: Repeatability and precision are ~3% for E-field measurements including guidewire repositioning, ~3% for temperature slopes and an ~6% root-mean-square deviation between B1+ measurements and simulations. Real-time pTx mitigation with the OP mode reduces the E-fields everywhere within the investigated area with a maximum reduction factor of 26 compared to the circularly polarized mode. Tip heating was measured with ~100 µK resolution and ~14 Hz sampling frequency and showed substantial reduction for the OP vs CP mode. CONCLUSION: The pTx medical implant safety testbed presents a much-needed flexible and modular hardware configuration for the in-vitro assessment of implant safety, covering all field strengths from 0.5-7 T. Sensor based real-time mitigation strategies utilizing pTx and the OP method allow to substantially reduce RF induced implant heating while maintaining sufficient image quality without the need for a priori knowledge based on simulations or in-vitro testing.
Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes , Ondas de RadioRESUMEN
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Asunto(s)
Membrana Mucosa/metabolismo , Factores Trefoil/metabolismo , Factores Trefoil/fisiología , Animales , Proteínas Portadoras/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Humanos , Mucinas/metabolismo , Membrana Mucosa/fisiología , Moco/metabolismo , Péptidos , Estómago/patología , Factor Trefoil-1/metabolismo , Factor Trefoil-2/metabolismo , Factor Trefoil-3/metabolismo , Factores Trefoil/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SGPLL). The SGPLL was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SGPLL. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SGPLL revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SGPLL and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SGPLL form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment.
RESUMEN
Correction for 'Chemical synthesis of human trefoil factor 1 (TFF1) and its homodimer provides novel insights into their mechanisms of action' by Nayara Braga Emidio et al., Chem. Commun., 2020, DOI: 10.1039/D0CC02321C.
RESUMEN
TFF1 is a key peptide for gastrointestinal protection and repair. Its molecular mechanism of action remains poorly understood with synthetic intractability a recognised bottleneck. Here we describe the synthesis of TFF1 and its homodimer and their interactions with mucins and Helicobacter pylori. Synthetic access to TFF1 is an important milestone for probe and therapeutic development.
Asunto(s)
Helicobacter pylori/metabolismo , Mucinas/metabolismo , Factor Trefoil-1/síntesis química , Factor Trefoil-1/metabolismo , Dimerización , Humanos , Modelos Moleculares , Factor Trefoil-1/químicaRESUMEN
Thermal magnetic resonance (ThermalMR) accommodates radio frequency (RF)-induced temperature modulation, thermometry, anatomic and functional imaging, and (nano)molecular probing in an integrated RF applicator. This study examines the feasibility of ThermalMR for the controlled release of a model therapeutics from thermoresponsive nanogels using a 7.0-tesla whole-body MR scanner en route to local drug-delivery-based anticancer treatments. The capacity of ThermalMR is demonstrated in a model system involving the release of fluorescein-labeled bovine serum albumin (BSA-FITC, a model therapeutic) from nanometer-scale polymeric networks. These networks contain thermoresponsive polymers that bestow environmental responsiveness to physiologically relevant changes in temperature. The release profile obtained for the reference data derived from a water bath setup used for temperature stimulation is in accordance with the release kinetics deduced from the ThermalMR setup. In conclusion, ThermalMR adds a thermal intervention dimension to an MRI device and provides an ideal testbed for the study of the temperature-induced release of drugs, magnetic resonance (MR) probes, and other agents from thermoresponsive carriers. Integrating diagnostic imaging, temperature intervention, and temperature response control, ThermalMR is conceptually appealing for the study of the role of temperature in biology and disease and for the pursuit of personalized therapeutic drug delivery approaches for better patient care.
RESUMEN
The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.
Asunto(s)
Integumento Común/fisiología , Mucinas/metabolismo , Moco/metabolismo , Factores Trefoil/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Glándulas Exocrinas , Mucinas/química , Piel/metabolismo , Proteínas de Xenopus/químicaRESUMEN
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Asunto(s)
Mucosa Gástrica/metabolismo , Factor Trefoil-1/química , Factor Trefoil-1/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cisteína/metabolismo , Humanos , Mucina 6/metabolismo , Unión Proteica , Multimerización de Proteína , Antro Pilórico/metabolismoRESUMEN
The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck and antral gland cells tightly associated as a lectin with the ortholog of mucin MUC6. Both TFF peptides have diverse protective functions, xP1 as a scavenger for reactive oxygen species preventing oxidative damage and xP4 as a constituent of the water-insoluble adherent inner mucus barrier. Here, we present localization studies using immunofluorescence and immunoelectron microscopy. xP1 is concentrated in dense cores of secretory granules of surface mucous cells, whereas xP4 mixes with MUC6 in esophageal goblet cells. Of note, we observe two different types of goblet cells, which differ in their xP4 synthesis, and this is even visible morphologically at the electron microscopic level. xP4-negative granules are recognized by their halo, which is probably the result of shrinkage during the processing of samples for electron microscopy. Probably, the tight lectin binding of xP4 and MUC6 creates a crosslinked mucous network forming a stabile granule matrix, which prevents shrinkage.
Asunto(s)
Mucosa Esofágica/metabolismo , Mucosa Gástrica/metabolismo , Células Caliciformes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Vesículas Secretoras/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Secreciones Corporales/metabolismo , Mucosa Esofágica/ultraestructura , Esófago/metabolismo , Esófago/ultraestructura , Técnica del Anticuerpo Fluorescente , Mucosa Gástrica/ultraestructura , Células Caliciformes/citología , Células Caliciformes/ultraestructura , Lectinas/metabolismo , Microscopía Electrónica , Mucina 6/metabolismo , Mucinas/metabolismo , Proteínas de Xenopus/ultraestructura , Xenopus laevisRESUMEN
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.