Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Radiother Oncol ; : 110437, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013502

RESUMEN

PURPOSE: Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS: Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS: Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION: In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.

2.
Clin Transl Radiat Oncol ; 45: 100736, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433949

RESUMEN

Background: The aim of this prospective observational study was to evaluate the dosimetry benefits, changes in pulmonary function, and clinical outcome of online adaptive MR-guided SBRT. Methods: From 11/2020-07/2022, 45 consecutive patients with 59 lesions underwent multi-fraction SBRT (3-8 fractions) at our institution. Patients were eligible if they had biopsy-proven NSCLC or lung cancer/metastases diagnosed via clinical imaging. Endpoints were local control (LC) and overall survival (OS). We evaluated PTV/GTV dose coverage, organs at risk exposure, and changes in pulmonary function (PF). Acute toxicity was classified per the National Cancer Institute-Common Terminology Criteria for Adverse Events version 5.0. Results: The median PTV was 14.4 cm3 (range: 3.4 - 96.5 cm3). In total 195/215 (91%) plans were reoptimised. In the reoptimised vs. predicted plans, PTV coverage by the prescribed dose increased in 94.6% of all fractions with a median increase in PTV VPD of 5.6% (range: -1.8 - 44.6%, p < 0.001), increasing the number of fractions with PTV VPD ≥ 95% from 33% to 98%. The PTV D95% and D98% (BED10) increased in 93% and 95% of all fractions with a median increase of 7.7% (p < 0.001) and 10.6% (p < 0.001). The PTV D95% (BED10) increased by a mean of 9.6 Gy (SD: 10.3 Gy, p < 0.001). At a median follow-up of 21.4 months (95% CI: 12.3-27.0 months), 1- and 2-year LC rates were 94.8% (95% CI: 87.6 - 100.0%) and 91.1% (95% CI: 81.3 - 100%); 1- and 2-year OS rates were 85.6% (95% CI: 75.0 - 96.3%) and 67.1 % (95% CI: 50.3 - 83.8%). One grade ≥ 3 toxicity and no significant reduction in short-term PF parameters were recorded. Conclusions: Online adaptive MR-guided SBRT is an effective, safe and generally well tolerated treatment option for lung tumours achieving encouraging local control rates with significantly improved target volume coverage.

3.
Phys Med Biol ; 68(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37669669

RESUMEN

Objective.To experimentally validate a method to create continuous time-resolved estimated synthetic 4D-computed tomography datasets (tresCTs) based on orthogonal cine MRI data for lung cancer treatments at a magnetic resonance imaging (MRI) guided linear accelerator (MR-linac).Approach.A breathing porcine lung phantom was scanned at a CT scanner and 0.35 T MR-linac. Orthogonal cine MRI series (sagittal/coronal orientation) at 7.3 Hz, intersecting tumor-mimicking gelatin nodules, were deformably registered to mid-exhale 3D-CT and 3D-MRI datasets. The time-resolved deformation vector fields were extrapolated to 3D and applied to a reference synthetic 3D-CT image (sCTref), while accounting for breathing phase-dependent lung density variations, to create 82 s long tresCTs at 3.65 Hz. Ten tresCTs were created for ten tracked nodules with different motion patterns in two lungs. For each dataset, a treatment plan was created on the mid-exhale phase of a measured ground truth (GT) respiratory-correlated 4D-CT dataset with the tracked nodule as gross tumor volume (GTV). Each plan was recalculated on the GT 4D-CT, randomly sampled tresCT, and static sCTrefimages. Dose distributions for corresponding breathing phases were compared in gamma (2%/2 mm) and dose-volume histogram (DVH) parameter analyses.Main results.The mean gamma pass rate between all tresCT and GT 4D-CT dose distributions was 98.6%. The mean absolute relative deviations of the tresCT with respect to GT DVH parameters were 1.9%, 1.0%, and 1.4% for the GTVD98%,D50%, andD2%, respectively, 1.0% for the remaining nodulesD50%, and 1.5% for the lungV20Gy. The gamma pass rate for the tresCTs was significantly larger (p< 0.01), and the GTVD50%deviations with respect to the GT were significantly smaller (p< 0.01) than for the sCTref.Significance.The results suggest that tresCTs could be valuable for time-resolved reconstruction and intrafractional accumulation of the dose to the GTV for lung cancer patients treated at MR-linacs in the future.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Porcinos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética , Pulmón , Tomografía Computarizada Cuatridimensional/métodos , Imagen por Resonancia Cinemagnética , Planificación de la Radioterapia Asistida por Computador/métodos
4.
Radiother Oncol ; 186: 109744, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330054

RESUMEN

BACKGROUND AND PURPOSE: There is no randomized evidence comparing whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases. This prospective nonrandomized controlled single arm trial attempts to reduce the gap until prospective randomized controlled trial results are available. MATERIAL AND METHODS: We included patients with 4-10 brain metastases and ECOG performance status ≤ 2 from all histologies except small-cell lung cancer, germ cell tumors, and lymphoma. The retrospective WBRT-cohort was selected 2:1 from consecutive patients treated within 2012-2017. Propensity-score matching was performed to adjust for confounding factors such as sex, age, primary tumor histology, dsGPA score, and systemic therapy. SRS was performed using a LINAC-based single-isocenter technique employing prescription doses from 15-20Gyx1 at the 80% isodose line. The historical control consisted of equivalent WBRT dose regimens of either 3Gyx10 or 2.5Gyx14. RESULTS: Patients were recruited from 2017-2020, end of follow-up was July 1st, 2021. 40 patients were recruited to the SRS-cohort and 70 patients were eligible as controls in the WBRT-cohort. Median OS, and iPFS were 10.4 months (95%-CI 9.3-NA) and 7.1 months (95%-CI 3.9-14.2) for the SRS-cohort, and 6.5 months (95%-CI 4.9-10.4), and 5.9 months (95%-CI 4.1-8.8) for the WBRT-cohort, respectively. Differences were non-significant for OS (HR: 0.65; 95%-CI 0.40-1.05; P =.074) and iPFS (P =.28). No grade III toxicities were observed in the SRS-cohort. CONCLUSION: This trial did not meet its primary endpoint as the OS-improvement of SRS compared to WBRT was non-significant and thus superiority could not be proven. Prospective randomized trials in the era of immunotherapy and targeted therapies are warranted.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Radiocirugia/métodos , Estudios Retrospectivos , Estudios Prospectivos , Irradiación Craneana/métodos , Neoplasias Encefálicas/secundario , Encéfalo , Resultado del Tratamiento
5.
Adv Radiat Oncol ; 8(3): 101185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896209

RESUMEN

Purpose: Translocator protein (TSPO) positron emission tomography (PET) using 18F-GE-180 shows high tumor-to-brain contrast in high-grade glioma (HGG), even in areas without magnetic resonance imaging (MRI) contrast enhancement. Until now, the benefit of 18F-GE-180 PET in primary radiation therapy (RT) and reirradiation (reRT) treatment planning for patients with HGG has not been assessed. Methods and Materials: The possible benefit of 18F-GE-180 PET in RT and reRT planning was retrospectively evaluated through post hoc spatial correlations of PET-based biological tumor volumes (BTVs) with conventional MRI-based consensus gross tumor volumes (cGTVs). To find the ideal threshold for BTV definition in RT and reRT treatment planning, tumor-to-background activity thresholds of 1.6, 1.8, and 2.0 were applied. Spatial overlap of PET- and MRI-based tumor volumes was measured by the Sørensen-Dice coefficient (SDC) and the conformity index (CI). Additionally, the minimal margin to include the entire BTV into the expanded cGTV was determined. Results: Thirty-five primary RT and 16 reRT cases were examined. BTV1.6, BTV1.8, and BTV2.0 were significantly larger than corresponding cGTV volumes in primary RT (median volumes: 67.4, 50.7, and 39.1, respectively, vs 22.6 cm3; P < .001, P < .001, and P = .017, respectively; Wilcoxon test) and reRT cases (median volumes: 80.5, 55.0, and 41.6, respectively, vs 22.7 cm3; P = .001, P = .005, and P = .144, respectively; Wilcoxon test). BTV1.6, BTV1.8, and BTV2.0 showed low but increasing conformity with cGTVs in the primary RT (SDC: 0.51, 0.55, and 0.58, respectively; CI: 0.35, 0.38, and 0.41, respectively) and reRT setting (SDC: 0.38, 0.40, and 0.40, respectively; CI: 0.24, 0.25, and 0.25, respectively). The minimal margin required to include the BTV within the cGTV was significantly smaller in the RT versus the reRT setting for thresholds 1.6 and 1.8 but not significantly different for threshold 2.0 (median margin: 16, 12, and 10, respectively, vs 21.5, 17.5, and 13 mm, respectively; P = .007, P = .031, and P = .093, respectively; Mann-Whitney U test). Conclusions: 18F-GE-180 PET provides valuable information in RT treatment planning for patients with HGG. 18F-GE-180-based BTVs with a threshold of 2.0 were most consistent in primary and reRT.

6.
Phys Med ; 101: 104-111, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988480

RESUMEN

PURPOSE: The interplay between respiratory tumor motion and dose application by intensity modulated radiotherapy (IMRT) techniques can potentially lead to undesirable and non-intuitive deviations from the planned dose distribution. We developed a 4D Monte Carlo (MC) dose recalculation framework featuring statistical breathing curve sampling, to precisely simulate the dose distribution for moving target volumes aiming at a comprehensive assessment of interplay effects. METHODS: We implemented a dose accumulation tool that enables dose recalculations of arbitrary breathing curves including the actual breathing curve of the patient. This MC dose recalculation framework is based on linac log-files, facilitating a high temporal resolution up to 0.1 s. By statistical analysis of 128 different breathing curves, interplay susceptibility of different treatment parameters was evaluated for an exemplary patient case. To facilitate prospective clinical application in the treatment planning stage, in which patient breathing curves or linac log-files are not available, we derived a log-file free version with breathing curves generated by a random walk approach. Interplay was quantified by standard deviations σ in D5%, D50% and D95%. RESULTS: Interplay induced dose deviations for single fractions were observed and evaluated for IMRT and volumetric arc therapy (σD95% up to 1.3 %) showing a decrease with higher fraction doses and an increase with higher MU rates. Interplay effects for conformal treatment techniques were negligible (σ<0.1%). The log-file free version and the random walk generated breathing curves yielded similar results (deviations in σ< 0.1 %) and can be used as substitutes for interplay assessment. CONCLUSION: It is feasible to combine statistically sampled breathing curves with MC dose calculations. The universality of the presented framework allows comprehensive assessment of interplay effects in retrospective and prospective clinically relevant scenarios.


Asunto(s)
Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Método de Montecarlo , Estudios Prospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Respiración , Estudios Retrospectivos
7.
Phys Imaging Radiat Oncol ; 20: 117-120, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34917780

RESUMEN

Margin concepts in proton therapy aim to ensure full dose coverage of the clinical target volume (CTV) in presence of setup and range uncertainty. Due to inter-observer variability (IOV), the CTV itself is uncertain. We present a framework to evaluate the combined impact of IOV, setup and range uncertainty in a variance-based sensitivity analysis (SA). For ten patients with skull base meningioma, the mean calculation time to perform the SA including 1.6 × 104 dose recalculations was 59 min. For two patients in this dataset, IOV had a relevant impact on the estimated CTV D95% uncertainty.

8.
Radiat Oncol ; 16(1): 165, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454558

RESUMEN

BACKGROUND: Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. METHODS: Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. RESULTS: 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61 years old in median (range 42-84 years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60 Gy (2 Gy × 30), 59.4 Gy (1.8 Gy × 33), 55 Gy (2.2 Gy × 25) and 50 Gy (2.5 Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5 Gy (range 51.2-62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33-79.7) and 40.7 percent (range 14.9-64.1), respectively. Median survival was eight months (95% KI 3.6-12.4 months) and median progression free survival after initiation of RT five months (95% CI 2.8-7.2 months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. CONCLUSION: Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Quimioradioterapia , Fraccionamiento de la Dosis de Radiación , Femenino , Glioma/tratamiento farmacológico , Glioma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Radioterapia/efectos adversos , Estudios Retrospectivos
9.
Strahlenther Onkol ; 197(7): 601-613, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884441

RESUMEN

BACKGROUND: Single-isocenter dynamic conformal arc (SIDCA) therapy is a technically efficient way of delivering stereotactic radiosurgery (SRS) to multiple metastases simultaneously. This study reports on the safety and feasibility of linear accelerator (LINAC) based SRS with SIDCA for patients with multiple brain metastases. METHODS: All patients who received SRS with this technique between November 2017 and June 2019 within a prospective registry trial were included. The patients were irradiated with a dedicated planning tool for multiple brain metastases using a LINAC with a 5 mm multileaf collimator. Follow-up was performed every 3 months, including clinical and radiological examination with cranial magnetic resonance imaging (MRI). These early data were analyzed using descriptive statistics and the Kaplan-Meier method. RESULTS: A total of 65 patients with 254 lesions (range 2-12) were included in this analysis. Median beam-on time was 23 min. The median follow-up at the time of analysis was 13 months (95% CI 11.1-14.9). Median overall survival and median intracranial progression-free survival was 15 months (95% CI 7.7-22.3) and 7 months (95% CI 3.9-10.0), respectively. Intracranial and local control after 1 year was 64.6 and 97.5%, respectively. During follow-up, CTCAE grade I adverse effects (AE) were experienced by 29 patients (44.6%; 18 of them therapy related, 27.7%), CTCAE grade II AEs by four patients (6.2%; one of them therapy related, 1.5%), and CTCAE grade III by three patients (4.6%; none of them therapy related). Two lesions (0.8%) in two patients (3.1%) were histopathologically proven to be radiation necrosis. CONCLUSION: Simultaneous SRS using SIDCA seems to be a feasible and safe treatment for patients with multiple brain metastases.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Prospectivos , Radiocirugia/métodos , Radioterapia Conformacional/métodos , Resultado del Tratamiento , Adulto Joven
10.
Med Phys ; 48(2): 805-818, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33210739

RESUMEN

PURPOSE: Treatment plans in proton therapy are more sensitive to uncertainties than in conventional photon therapy. In addition to setup uncertainties, proton therapy is affected by uncertainties in proton range and relative biological effectiveness (RBE). While to date a constant RBE of 1.1 is commonly assumed, the actual RBE is known to increase toward the distal end of the spread-out Bragg peak. Several models for variable RBE predictions exist. We present a framework to evaluate the combined impact and interactions of setup, range, and RBE uncertainties in a comprehensive, variance-based sensitivity analysis (SA). MATERIAL AND METHODS: The variance-based SA requires a large number (104 -105 ) of RBE-weighted dose (RWD) calculations. Based on a particle therapy extension of the research treatment planning system CERR we implemented a fast, graphics processing unit (GPU) accelerated pencil beam modeling of patient and range shifts. For RBE predictions, two biological models were included: The mechanistic repair-misrepair-fixation (RMF) model and the phenomenological Wedenberg model. All input parameters (patient position, proton range, RBE model parameters) are sampled simultaneously within their assumed probability distributions. Statistical formalisms rank the input parameters according to their influence on the overall uncertainty of RBE-weighted dose-volume histogram (RW-DVH) quantiles and the RWD in every voxel, resulting in relative, normalized sensitivity indices (S = 0: noninfluential input, S = 1: only influential input). Results are visualized as RW-DVHs with error bars and sensitivity maps. RESULTS AND CONCLUSIONS: The approach is demonstrated for two representative brain tumor cases and a prostate case. The full SA including ∼ 3 × 10 4 RWD calculations took 39, 11, and 55 min, respectively. Range uncertainty was an important contribution to overall uncertainty at the distal end of the target, while the relatively smaller uncertainty inside the target was governed by biological uncertainties. Consequently, the uncertainty of the RW-DVH quantile D98 for the target was governed by range uncertainty while the uncertainty of the mean target dose was dominated by the biological parameters. The SA framework is a powerful and flexible tool to evaluate uncertainty in RWD distributions and DVH quantiles, taking into account physical and RBE uncertainties and their interactions. The additional information might help to prioritize research efforts to reduce physical and RBE uncertainties and could also have implications for future approaches to biologically robust planning and optimization.


Asunto(s)
Terapia de Protones , Análisis de Varianza , Humanos , Masculino , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa , Incertidumbre
11.
Med Phys ; 47(7): 2768-2778, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32162332

RESUMEN

PURPOSE: To model four-dimensional (4D) relative biological effectiveness (RBE)-weighted dose variations in abdominal lesions treated with scanned carbon ion beam in case of irregular breathing motion. METHODS: The proposed method, referred to as bioWED method, combines the simulation of tumor motion in a patient- and beam-specific water equivalent depth (WED)-space with RBE modeling, aiming at the estimation of RBE-weighted dose changes due to respiratory motion. The method was validated on a phantom, simulating gated and free breathing dose delivery, and on a patient case, for which free breathing irradiation was assumed and both amplitude and baseline breathing irregularities were simulated through a respiratory motion model. We quantified (a) the effect of motion on the equivalent uniform dose (EUD) and the RBE-weighted dose-volume histograms (DVH), by comparing the planned dose distribution with "ground truth" 4D RBE-weighted doses computed using 4D computed tomography data, and (ii) the estimation error, by comparing the doses estimated with the bioWED method to "ground truth" 4D RBE-weighted doses. RESULTS: In the phantom validation, the estimation error on the EUD was limited with respect to the motion effect and the median estimation error on relevant RBE-weighted DVH metrics remained within 5%. In the patient study, the estimation error as computed on the EUD was smaller than the corresponding motion effect, exhibiting the largest values in the baseline irregularity simulation. However, the median estimation error over all simulations was below 3.2% considering relevant DVH metrics. CONCLUSIONS: In the evaluated cases, the bioWED method showed proper accuracy when compared to deformable image registration-based 4D dose calculation. Therefore, it can be seen as a tool to test treatment plan robustness against irregular breathing motion, although its accuracy decreases as a function of increasing soft tissue deformation and should be evaluated on a larger patient dataset.


Asunto(s)
Carbono , Neoplasias Pulmonares , Tomografía Computarizada Cuatridimensional , Humanos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa
12.
Radiat Oncol ; 15(1): 37, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059731

RESUMEN

BACKGROUND: There is limited data on the use of targeted or immunotherapy (TT/IT) in combination with single fraction stereotactic radiosurgery (SRS) in patients with melanoma brain metastasis (MBM). Therefore, we analyzed the outcome and toxicity of SRS alone compared to SRS in combination with TT/IT. METHODS: Patients with MBM treated with single session SRS at our department between 2014 and 2017 with a minimum follow-up of 3 months after first SRS were included. The primary endpoint of this study was local control (LC). Secondary endpoints were distant intracranial control, radiation necrosis-free survival (RNFS), and overall survival (OS). The local/ distant intracranial control rates, RNFS and OS were analyzed using the Kaplan-Meier method. The log-rank test was used to test differences between groups. Cox proportional hazard model was performed for univariate continuous variables and multivariate analyses. RESULTS: Twenty-eight patients (17 male and 11 female) with 52 SRS-lesions were included. The median follow-up was 19 months (range 14-24 months) after first SRS. Thirty-six lesions (69.2%) were treated with TT/IT simultaneously (4 weeks before and 4 weeks after SRS), while 16 lesions (30.8%) were treated with SRS alone or with sequential TT/IT. The 1-year local control rate was 100 and 83.3% for SRS with TT/IT and SRS alone (p = 0.023), respectively. The estimated 1-year RNFS was 90.0 and 82.1% for SRS in combination with TT/IT and SRS alone (p = 0.935). The distant intracranial control rate after 1 year was 47.7 and 50% for SRS in combination with TT/IT and SRS alone (p = 0.933). On univariate analysis, the diagnosis-specific Graded Prognostic Assessment including the BRAF status (Melanoma-molGPA) was associated with a significantly improved LC. Neither gender nor SRS-PTV margin had a prognostic impact on LC. V10 and V12 were significantly associated with RNFS (p < 0.001 and p = 0.004). CONCLUSION: SRS with simultaneous TT/IT significantly improved LC with no significant difference in radiation necrosis rate. The therapy combination appears to be effective and safe. However, prospective studies on SRS with simultaneous TT/IT are necessary and ongoing. TRIAL REGISTRATION: The institutional review board approved this analysis on 10th of February 2015 and all patients signed informed consent (UE nr. 128-14).


Asunto(s)
Neoplasias Encefálicas/terapia , Inmunoterapia/mortalidad , Melanoma/terapia , Radiocirugia/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/secundario , Terapia Combinada , Femenino , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
13.
Radiat Oncol ; 14(1): 103, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186023

RESUMEN

BACKGROUND: In this dosimetric study, a dedicated planning tool for single isocenter stereotactic radiosurgery for multiple brain metastases using dynamic conformal arc therapy (DCAT) was compared to standard volumetric modulated arc therapy (VMAT). METHODS: Twenty patients with a total of 66 lesions who were treated with the DCAT tool were included in this study. Single fraction doses of 15-20 Gy were prescribed to each lesion. Patients were re-planned using non-coplanar VMAT. Number of monitor units as well as V4Gy, V5Gy and V8Gy were extracted for every plan. Using a density-based clustering algorithm, V10Gy and V12Gy and the volume receiving half of the prescribed dose were extracted for every lesion. Gradient indices and conformity indices were calculated. The correlation of the target sphericity, a measure of how closely the shape of the target PTV resembles a sphere, to the difference in V10Gy and V12Gy between the two techniques was assessed using Spearman's correlation coefficient. RESULTS: The automated DCAT planning tool performed significantly better in terms of all investigated metrics (p < 0.05), in particular healthy brain sparing (V10Gy: median 3.2 cm3 vs. 4.9 cm3), gradient indices (median 5.99 vs. 7.17) and number of monitor units (median 4569 vs. 5840 MU). Differences in conformity indices were minimal (median 0.75 vs. 0.73) but still significant (p < 0.05). A moderate correlation between PTV sphericity and the difference of V10Gy and V12Gy between the two techniques was found (Spearman's rho = 0.27 and 0.30 for V10Gy and V12Gy, respectively, p < 0.05). CONCLUSIONS: The dedicated DCAT planning tool performed better than VMAT in terms of healthy brain sparing and treatment efficiency, in particular for nearly spherical lesions. In contrast, VMAT can be superior in cases with irregularly shaped lesions.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/cirugía , Neoplasias/cirugía , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Neoplasias Encefálicas/secundario , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Órganos en Riesgo/efectos de la radiación , Pronóstico , Dosificación Radioterapéutica , Estudios Retrospectivos
14.
Z Med Phys ; 29(3): 249-261, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30448049

RESUMEN

Inter-fractional variations of breathing pattern and patient anatomy introduce dose uncertainties in proton therapy. One approach to monitor these variations is to utilize the cone-beam computed tomography (CT, CBCT) scans routinely taken for patient positioning, reconstruct them as 4DCBCTs, and generate 'virtual CTs' (vCTs), combining the accurate CT numbers of the diagnostic 4DCT and the geometry of the daily 4DCBCT by using deformable image registration (DIR). In this study different algorithms for 4DCBCT reconstruction and DIR were evaluated. For this purpose, CBCT scans of a moving ex vivo porcine lung phantom with 663 and 2350 projections respectively were acquired, accompanied by an additional 4DCT as reference. The CBCT projections were sorted in 10 phase bins with the Amsterdam-shroud method and reconstructed phase-by-phase using first a FDK reconstruction from the Reconstruction Toolkit (RTK) and again an iterative reconstruction algorithm implemented in the Gadgetron Toolkit. The resulting 4DCBCTs were corrected by DIR of the corresponding 4DCT phases, using both a morphons algorithm from REGGUI and a b-spline deformation from Plastimatch. The resulting 4DvCTs were compared to the 4DCT by visual inspection and by calculating water equivalent thickness (WET) maps from the phantom's surface to the distal edge of a target from various angles. The optimized procedure was successfully repeated with mismatched input phases and on a clinical patient dataset. Proton treatment plans were simulated on the 4DvCTs and the dose distributions compared to the reference based on the 4DCT via gamma pass rate analysis. A combination of iterative reconstruction and morphons DIR yielded the most accurate 4DvCTs, with median WET differences under 2mm and 3%/3mm gamma pass rates per phase between 89% and 99%. These results suggest that image correction of iteratively reconstructed 4DCBCTs with a morphons DIR of the planning CT may yield sufficiently accurate 4DvCTs for daily time resolved proton dose calculations.


Asunto(s)
Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada Cuatridimensional/instrumentación , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Terapia de Protones , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Animales , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/efectos de la radiación , Dosificación Radioterapéutica , Porcinos
15.
Z Med Phys ; 29(3): 216-228, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30409729

RESUMEN

Proton radiotherapy (PT) requires accurate target alignment before each treatment fraction, ideally utilizing 3D in-room X-ray computed tomography (CT) imaging. Typically, the optimal patient position is determined based on anatomical landmarks or implanted markers. In the presence of non-rigid anatomical changes, however, the planning scenario cannot be exactly reproduced and positioning should rather aim at finding the optimal position in terms of the actually applied dose. In this work, dose-guided patient alignment, implemented as multicriterial optimization (MCO) problem, was investigated in the scope of intensity-modulated and double-scattered PT (IMPT and DSPT) for the first time. A method for automatically determining the optimal patient position with respect to pre-defined clinical goals was implemented. Linear dose interpolation was used to access a continuous space of potential patient shifts. Fourteen head and neck (H&N) and eight prostate cancer patients with up to five repeated CTs were included. Dose interpolation accuracy was evaluated and the potential dosimetric advantages of dose-guided over bony-anatomy-based patient alignment investigated by comparison of clinically relevant target and organ-at-risk (OAR) dose-volume histogram (DVH) parameters. Dose interpolation was found sufficiently accurate with average pass-rates of 90% and 99% for an exemplary H&N and prostate patient, respectively, using a 2% dose-difference criterion. Compared to bony-anatomy-based alignment, the main impact of automated MCO-based dose-guided positioning was a reduced dose to the serial OARs (spinal cord and brain stem) for the H&N cohort. For the prostate cohort, under-dosage of the target structures could be efficiently diminished. Limitations of dose-guided positioning were mainly found in reducing target over-dosage due to weight loss for H&N patients, which might require adaptation of the treatment plan. Since labor-intense online quality-assurance is not required for dose-guided patient positioning, it might, nevertheless, be considered an interesting alternative to full online re-planning for initially mitigating the effects of anatomical changes.


Asunto(s)
Posicionamiento del Paciente/métodos , Terapia de Protones , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Estudios de Cohortes , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Imagenología Tridimensional , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X
16.
Radiother Oncol ; 125(3): 464-469, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29033253

RESUMEN

BACKGROUND AND PURPOSE: Our aim was to evaluate the feasibility and potential advantages of dose guided patient positioning based on dose recalculation on scatter corrected cone beam computed tomography (CBCT) image data. MATERIAL AND METHODS: A scatter correction approach has been employed to enable dose calculations on CBCT images. A recently proposed tool for interactive multicriterial dose-guided patient positioning which uses interpolation between pre-calculated sample doses has been utilized. The workflow was retrospectively evaluated for two head and neck patients with a total of 39 CBCTs. Dose-volume histogram (DVH) parameters were compared to rigid image registration based isocenter corrections (clinical scenario). RESULTS: The accuracy of the dose interpolation was found sufficient, facilitating the implementation of dose guided patient positioning. Compared to the clinical scenario, the mean dose to the parotid glands could be improved for 2 out of 5 fractions for the first patient while other parameters were preserved. For the second patient, the mean coverage over all fractions of the high dose PTV could be improved by 4%. For this patient, coverage improvements had to be traded against organ at risk (OAR) doses within their clinical tolerance limits. CONCLUSIONS: Dose guided patient positioning using in-room CBCT data is feasible and offers increased control over target coverage and doses to OARs.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Posicionamiento del Paciente , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos
17.
Phys Med Biol ; 62(1): 165-185, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27991454

RESUMEN

In intensity-modulated radiation therapy (IMRT), 3D in-room imaging data is typically utilized for accurate patient alignment on the basis of anatomical landmarks. In the presence of non-rigid anatomical changes, it is often not obvious which patient position is most suitable. Thus, dose-guided patient alignment is an interesting approach to use available in-room imaging data for up-to-date dose calculation, aimed at finding the position that yields the optimal dose distribution. This contribution presents the first implementation of dose-guided patient alignment as multi-criteria optimization problem. User-defined clinical objectives are employed for setting up a multi-objective problem. Using pre-calculated dose distributions at a limited number of patient shifts and dose interpolation, a continuous space of Pareto-efficient patient shifts becomes accessible. Pareto sliders facilitate interactive browsing of the possible shifts with real-time dose display to the user. Dose interpolation accuracy is validated and the potential of multi-objective dose-guided positioning demonstrated for three head and neck (H&N) and three prostate cancer patients. Dose-guided positioning is compared to replanning for all cases. A delineated replanning CT served as surrogate for in-room imaging data. Dose interpolation accuracy was high. Using a [Formula: see text] dose difference criterion, a median pass-rate of 95.7% for H&N and 99.6% for prostate cases was determined in a comparison to exact dose calculations. For all patients, dose-guided positioning allowed to find a clinically preferable dose distribution compared to bony anatomy based alignment. For all H&N cases, mean dose to the spared parotid glands was below [Formula: see text] (up to [Formula: see text] with bony alignment) and clinical target volume (CTV) [Formula: see text] above 99.1% (compared to 95.1%). For all prostate patients, CTV [Formula: see text] was above 98.9% (compared to 88.5%) and [Formula: see text] to the rectum below [Formula: see text] (compared to 56.1%). Replanning yielded improved results for the H&N cases. For the prostate cases, differences to dose-guided positioning were minor.


Asunto(s)
Posicionamiento del Paciente/métodos , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada
18.
Med Phys ; 43(10): 5635, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27782706

RESUMEN

PURPOSE: This work aims at investigating intensity corrected cone-beam x-ray computed tomography (CBCT) images for accurate dose calculation in adaptive intensity modulated proton therapy (IMPT) for prostate and head and neck (H&N) cancer. A deformable image registration (DIR)-based method and a scatter correction approach using the image data obtained from DIR as prior are characterized and compared on the basis of the same clinical patient cohort for the first time. METHODS: Planning CT (pCT) and daily CBCT data (reconstructed images and measured projections) of four H&N and four prostate cancer patients have been considered in this study. A previously validated Morphons algorithm was used for DIR of the planning CT to the current CBCT image, yielding a so-called virtual CT (vCT). For the first time, this approach was translated from H&N to prostate cancer cases in the scope of proton therapy. The warped pCT images were also used as prior for scatter correction of the CBCT projections for both tumor sites. Single field uniform dose and IMPT (only for H&N cases) treatment plans have been generated with a research version of a commercial planning system. Dose calculations on vCT and scatter corrected CBCT (CBCTcor) were compared by means of the proton range and a gamma-index analysis. For the H&N cases, an additional diagnostic replanning CT (rpCT) acquired within three days of the CBCT served as additional reference. For the prostate patients, a comprehensive contour comparison of CBCT and vCT, using a trained physician's delineation, was performed. RESULTS: A high agreement of vCT and CBCTcor was found in terms of the proton range and gamma-index analysis. For all patients and indications between 95% and 100% of the proton dose profiles in beam's eye view showed a range agreement of better than 3 mm. The pass rate in a (2%,2 mm) gamma-comparison was between 96% and 100%. For H&N patients, an equivalent agreement of vCT and CBCTcor to the reference rpCT was observed. However, for the prostate cases, an insufficient accuracy of the vCT contours retrieved from DIR was found, while the CBCTcor contours showed very high agreement to the contours delineated on the raw CBCT. CONCLUSIONS: For H&N patients, no considerable differences of vCT and CBCTcor were found. For prostate cases, despite the high dosimetric agreement, the DIR yields incorrect contours, probably due to the more pronounced anatomical changes in the abdomen and the reduced soft-tissue contrast in the CBCT. Using the vCT as prior, these inaccuracies can be overcome and images suitable for accurate delineation and dose calculation in CBCT-based adaptive IMPT can be retrieved from scatter correction of the CBCT projections.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Dispersión de Radiación , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica
19.
Radiat Oncol ; 11(1): 118, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27609371

RESUMEN

BACKGROUND: The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). METHODS: Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann-Whitney-U-test and Spearman's rank correlation coefficient. RESULTS: The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). CONCLUSIONS: Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Hipocampo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos
20.
Int J Clin Oncol ; 21(4): 642-650, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26694815

RESUMEN

BACKGROUND: Neurocognition is a very important aspect of a brain tumor patient's quality of life following radiotherapy. The aim of the present study was to assess neurocognitive functions of patients diagnosed with high-grade gliomas undergoing radiotherapy by using the NeuroCogFx(®) test and to examine relevant dose/volume parameters as well as patient characteristics potentially influencing the neurological baseline status and subsequent outcome. METHODS: The cohort consisted of 44 astrocytoma World Health Organization grade III/IV patients. The NeuroCogFx(®) test was carried out on patients during (N = 44) and after (N = 21) irradiation. The test examines verbal/figural/short-term/working memory, psychomotorical speed, selective attention and verbal speed. The results were compared with regular patient and treatment data with an emphasis on the dose applied to the hippocampus. RESULTS: Overall there were only slight changes in the median test results when comparing the baseline to the follow-up tests. In the 'verbal memory test' lower percentile ranks were achieved in left-sided tumors compared to right-sided tumors (p = 0.034). Dexamethasone intake during radiotherapy was significantly correlated with the difference between the two test batteries. Concerning figural memory, a correlation was detected between decreased figural recognition and the radiation dose to the left hippocampus (p = 0.045). CONCLUSION: We conclude that tumor infiltration of the hippocampus has an impact on neurocognitive function. However, treatment with radiotherapy seems to have less influence on cognitive outcome than expected.


Asunto(s)
Astrocitoma/patología , Astrocitoma/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Procesos Mentales , Astrocitoma/complicaciones , Atención , Neoplasias Encefálicas/complicaciones , Cognición , Femenino , Hipocampo/patología , Humanos , Masculino , Memoria a Corto Plazo , Procesos Mentales/efectos de la radiación , Clasificación del Tumor , Invasividad Neoplásica , Pruebas Neuropsicológicas , Estudios Prospectivos , Calidad de Vida , Dosificación Radioterapéutica , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...