Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 14: 1230590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601631

RESUMEN

Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.

2.
BMC Biol ; 21(1): 149, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365578

RESUMEN

BACKGROUND: Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS: Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS: DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.


Asunto(s)
Cromatina , Metilación de ADN , Cromatina/genética , Regulación de la Expresión Génica , Epigénesis Genética , Genoma
3.
Proc Biol Sci ; 289(1981): 20221249, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36043281

RESUMEN

Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and pCO2. We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus, to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and pCO2. Adults were conditioned to controlled non-upwelling (high temperature, low pCO2) or upwelling (low temperature, high pCO2) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus, emphasizing the importance of adaptive evolution and phenotypic plasticity in organismal responses to global change.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Dióxido de Carbono , Frío , Variación Genética , Larva/genética , Erizos de Mar , Strongylocentrotus purpuratus/genética
4.
BMC Genomics ; 22(1): 32, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413121

RESUMEN

BACKGROUND: The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 µatm or 1050 µatm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 µatm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments. RESULTS: Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos. On the other hand, the transcriptomic response to pCO2 was relatively muted, particularly at the prism stage. CONCLUSIONS: M. franciscanus exhibited transcriptomic plasticity under different temperatures, indicating their capacity for a molecular-level response that may facilitate red sea urchins facing ocean warming as climate change continues. In contrast, the lack of a robust transcriptomic response, in combination with observations of decreased body size, under elevated pCO2 levels suggest that this species may be negatively affected by ocean acidification. High present-day pCO2 conditions that occur due to coastal upwelling may already be influencing populations of M. franciscanus.


Asunto(s)
Erizos de Mar , Agua de Mar , Animales , Dióxido de Carbono , Cambio Climático , Concentración de Iones de Hidrógeno , Erizos de Mar/genética , Temperatura
5.
Conserv Physiol ; 8(1): coaa013, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257214

RESUMEN

The ecologically important thecosome pteropods in the Limacina spp. complex have recently been the focus of studies examining the impacts global change factors - e.g., ocean acidification (OA) and ocean warming (OW) - on their performance and physiology. This focus is driven by conservation concerns where the health of pteropod populations is threatened by the high susceptibility of their shells to dissolution in low aragonite saturation states associated with OA and how coupling of these stressors may push pteropods past the limits of physiological plasticity. In this manipulation experiment, we describe changes in the transcriptome of the Antarctic pteropod, Limacina helicina antarctica, to these combined stressors. The conditions used in the laboratory treatments met or exceeded those projected for the Southern Ocean by the year 2100. We made two general observations regarding the outcome of the data: (1) Temperature was more influential than pH in terms of changing patterns of gene expression, and (2) these Antarctic pteropods appeared to have a significant degree of transcriptomic plasticity to respond to acute abiotic stress in the laboratory. In general, differential gene expression was observed amongst the treatments; here, for example, transcripts associated with maintaining protein structure and cell proliferation were up-regulated. To disentangle the effects of OA and OW, we used a weighted gene co-expression network analysis to explore patterns of change in the transcriptome. This approach identified gene networks associated with OW that were enriched for transcripts proposed to be involved in increasing membrane fluidity at warmer temperatures. Together these data provide evidence that L.h.antarctica has a limited capacity to acclimate to the combined conditions of OA and OW used in this study. This reduced scope of acclimation argues for continued study of how adaptation to polar aquatic environments may limit the plasticity of present-day populations in responding to future environmental change.

6.
Front Zool ; 17: 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095155

RESUMEN

For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.

7.
Mar Genomics ; 48: 100692, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31227413

RESUMEN

The red sea urchin, Mesocentrotus franciscanus, is an ecologically important kelp forest species that also serves as a valuable fisheries resource. In this study, we have assembled and annotated a developmental transcriptome for M. franciscanus that represents eggs and six stages of early development (8- to 16-cell, morula, hatched blastula, early gastrula, prism and early pluteus). Characterization of the transcriptome revealed distinct patterns of gene expression that corresponded to major developmental and morphological processes. In addition, the period during which maternally-controlled transcription was terminated and the zygotic genome was activated, the maternal-to-zygotic transition (MZT), was found to begin during early cleavage and persist through the hatched blastula stage, an observation that is similar to the timing of the MZT in other sea urchin species. The presented developmental transcriptome will serve as a useful resource for investigating, in both an ecological and fisheries context, how the early developmental stages of this species respond to environmental stressors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Erizos de Mar/genética , Transcriptoma , Animales , Embrión no Mamífero , Larva , Óvulo , Erizos de Mar/crecimiento & desarrollo
8.
Mar Environ Res ; 143: 49-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30448238

RESUMEN

High latitude seas will be among the first marine systems to be impacted by ocean acidification (OA). Previous research studying the effects of OA on the pteropod, Limacina helicina antarctica, has led this species to be identified as a sentinel organism for OA in polar oceans. Here, we present gene expression data on L. h. antarctica, collected in situ during the seasonal transition from early spring to early summer. Our findings suggest that after over-wintering under seasonal sea ice, pteropods progress toward full maturity in the early summer when food becomes increasingly available. This progression is highlighted by a dramatic shift in gene expression that supports the development of cytoskeletal structures, membrane ion transportation, and metabolically important enzymes associated with glycolysis. In addition, we observed signs of defense of genomic integrity and maturation as evidenced by an up-regulation of genes involved in DNA replication, DNA repair, and gametogenesis. These data contribute to a broader understanding of the life-cycle dynamics for L. h. antarctica and provide key insights into the transcriptomic signals of pteropod maturation and growth during this key seasonal transition.


Asunto(s)
Gastrópodos , Especies Centinela , Transcriptoma , Animales , Regiones Antárticas , Gastrópodos/genética , Gastrópodos/metabolismo , Estaciones del Año , Especies Centinela/genética , Especies Centinela/metabolismo
9.
Mol Ecol ; 27(5): 1120-1137, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29411447

RESUMEN

Understanding the mechanisms with which organisms can respond to a rapidly changing ocean is an important research priority in marine sciences, especially in the light of recent predictions regarding the pace of ocean change in the coming decades. Transgenerational effects, in which the experience of the parental generation can shape the phenotype of their offspring, may serve as such a mechanism. In this study, adult purple sea urchins, Strongylocentrotus purpuratus, were conditioned to regionally and ecologically relevant pCO2 levels and temperatures representative of upwelling (colder temperature and high pCO2 ) and nonupwelling (average temperature and low pCO2 ) conditions typical of coastal upwelling regions in the California Current System. Following 4.5 months of conditioning, adults were spawned and offspring were raised under either high or low pCO2 levels, to examine the role of maternal effects. Using RNA-seq and comparative transcriptomics, our results indicate that differential conditioning of the adults had an effect on the gene expression patterns of the progeny during the gastrula stage of early development. For example, maternal conditioning under upwelling conditions intensified the transcriptomic response of the progeny when they were raised under high versus low pCO2 conditions. Additionally, mothers that experienced upwelling conditions produced larger progeny. The overall findings of this study are complex, but do suggest that transgenerational plasticity in situ could act as an important mechanism by which populations might keep pace with rapid environmental change.


Asunto(s)
Dióxido de Carbono/farmacología , Strongylocentrotus purpuratus/genética , Aclimatación , Animales , Cambio Climático , Frío , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Exposición Materna , Strongylocentrotus purpuratus/crecimiento & desarrollo , Strongylocentrotus purpuratus/fisiología
10.
Conserv Physiol ; 5(1): cox064, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29218223

RESUMEN

The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.

11.
BMC Genomics ; 18(1): 812, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29061120

RESUMEN

BACKGROUND: Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. RESULTS: In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. CONCLUSIONS: Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO2. In a global change context, exposure of L. h. antarctica to the low pH, high pCO2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The transcriptomic response at both acute and longer-term acclimation time frames indicated that contemporary L. h. antarctica may not have the physiological plasticity necessary for adaptation to OA conditions expected in future decades. Lastly, the differential gene expression results further support the role of shelled pteropods such as L. h. antarctica as sentinel organisms for the impacts of ocean acidification.


Asunto(s)
Gastrópodos/genética , Ácidos , Animales , Regiones Antárticas , Dióxido de Carbono , Gastrópodos/efectos de los fármacos , Gastrópodos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Océanos y Mares , Oxígeno , Transcriptoma
12.
Ecol Evol ; 7(8): 2798-2811, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28428870

RESUMEN

In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo-to-larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up-regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.

13.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446693

RESUMEN

The success of early life-history stages is an environmentally sensitive bottleneck for many marine invertebrates. Responses of larvae to environmental stress may vary due to differences in maternal investment of energy stores and acclimatization/adaptation of a population to local environmental conditions. In this study, we compared two populations from sites with different environmental regimes (Moorea and Taiwan). We assessed the responses of Pocillopora damicornis larvae to two future co-occurring environmental stressors: elevated temperature and ocean acidification. Larvae from Taiwan were more sensitive to temperature, producing fewer energy-storage lipids under high temperature. In general, planulae in Moorea and Taiwan responded similarly to pCO2 Additionally, corals in the study sites with different environments produced larvae with different initial traits, which may have shaped the different physiological responses observed. Notably, under ambient conditions, planulae in Taiwan increased their stores of wax ester and triacylglycerol in general over the first 24 h of their dispersal, whereas planulae from Moorea consumed energy-storage lipids in all cases. Comparisons of physiological responses of P. damicornis larvae to conditions of ocean acidification and warming between sites across the species' biogeographic range illuminates the variety of physiological responses maintained within P. damicornis, which may enhance the overall persistence of this species in the light of global climate change.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Lípidos/análisis , Animales , Larva/fisiología , Agua de Mar , Taiwán
14.
Ecol Evol ; 7(6): 1737-1750, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28331584

RESUMEN

In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pHT ≤ 7.8) exposures, fertilization was tested across a range of pH (pHT 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.

15.
Mol Ecol ; 26(8): 2257-2275, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28141889

RESUMEN

Increasing awareness of spatial and temporal variation in ocean pH suggests some marine populations may be adapted to local pH regimes and will therefore respond differently to present-day pH variation and to long-term ocean acidification. In the Northeast Pacific Ocean, differences in the strength of coastal upwelling cause latitudinal variation in prevailing pH regimes that are hypothesized to promote local adaptation and unequal pH tolerance among resident populations. In this study, responses to experimental seawater acidification were compared among embryos and larvae from six populations of purple sea urchins (Strongylocentrotus purpuratus) inhabiting areas that differ in their frequency of low pH exposure and that prior research suggests are locally adapted to seawater pH. Transcriptomic analyses demonstrate urchin populations most frequently exposed to low pH seawater responded to experimental acidification by expressing genes within major ATP-producing pathways at greater levels than populations encountering low pH less often. Multiple genes within the tricarboxylic acid cycle, electron transport chain and fatty acid beta oxidation pathways were upregulated in urchin populations experiencing low pH conditions most frequently. These same metabolic pathways were significantly over-represented among genes both expressed in a population-specific manner and putatively under selection to enhance low pH tolerance. Collectively, these data suggest natural selection is acting on metabolic gene networks to redirect ATP toward maintaining acid-base homeostasis and enhance tolerance of seawater acidification. As a trade-off, marine populations more tolerant of low pH may have less energy to put towards other aspects of fitness and to respond to additional ocean change.


Asunto(s)
Aclimatación/genética , Agua de Mar/química , Strongylocentrotus purpuratus/genética , Transcriptoma , Ácidos/química , Animales , Dióxido de Carbono/química , Cambio Climático , Concentración de Iones de Hidrógeno , Océano Pacífico , Polimorfismo de Nucleótido Simple
16.
J Exp Biol ; 220(Pt 3): 369-378, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872216

RESUMEN

There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the Ub tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to those of the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.


Asunto(s)
Aclimatación , Proteínas de Peces/metabolismo , Perciformes/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Animales , Regiones Antárticas , Frío , Proteínas de Peces/genética , Regulación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
17.
Sci Data ; 3: 160087, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727238

RESUMEN

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Asunto(s)
Bivalvos/fisiología , Temperatura Corporal , Animales , Cambio Climático , Ecosistema
18.
Evol Appl ; 9(9): 1043-1053, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27695514

RESUMEN

To project how ocean acidification will impact biological communities in the future, it is critical to understand the potential for local adaptation and the physiological plasticity of marine organisms throughout their entire life cycle, as some stages may be more vulnerable than others. Coralline algae are ecosystem engineers that play significant functional roles in oceans worldwide and are considered vulnerable to ocean acidification. Using different stages of coralline algae, we tested the hypothesis that populations living in environments with higher environmental variability and exposed to higher levels of pCO 2 would be less affected by high pCO 2 than populations from a more stable environment experiencing lower levels of pCO 2. Our results show that spores are less sensitive to elevated pCO 2 than adults. Spore growth and mortality were not affected by pCO 2 level; however, elevated pCO 2 negatively impacted the physiology and growth rates of adults, with stronger effects in populations that experienced both lower levels of pCO 2 and lower variability in carbonate chemistry, suggesting local adaptation. Differences in physiological plasticity and the potential for adaptation could have important implications for the ecological and evolutionary responses of coralline algae to future environmental changes.

19.
Mar Genomics ; 28: 25-28, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27157132

RESUMEN

The pteropod Limacina helicina antarctica is a dominant member of the zooplankton assemblage in the Antarctic marine ecosystem, and is part of a relatively simple food web in nearshore marine Antarctic waters. As a shelled pteropod, Limacina has been suggested as a candidate sentinel organism for the impacts of ocean acidification, due to the potential for shell dissolution in undersaturated waters. In this study, our goal was to develop a transcriptomic resource for Limacina that would support mechanistic studies to explore the physiological response of Limacina to abiotic stressors such as ocean acidification and ocean warming. To this end, RNA sequencing libraries were prepared from Limacina that had been exposed to a range of pH levels and an elevated temperature to maximize the diversity of expressed genes. RNA sequencing (RNA-seq) was conducted on an Illumina NextSeq500 which produced 339,000,000 150bp paired-end reads. The de novo transcriptome was produced using Trinity and annotation of the assembled transcriptome resulted in the identification of 81,229 transcripts in 137 KEGG pathways. This RNA-seq effort resulted in a transcriptome for the Antarctic pteropod, Limacina helicina antarctica, that is a major resource for an international marine science research community studying these pelagic molluscs in a global change context.


Asunto(s)
Gastrópodos/genética , Agua de Mar/química , Transcriptoma , Animales , Regiones Antárticas , Dióxido de Carbono , Frío , Gastrópodos/fisiología , Calor , Concentración de Iones de Hidrógeno , Análisis de Secuencia de ARN
20.
Ecol Lett ; 19(7): 771-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27151381

RESUMEN

Although theory suggests geographic variation in species' performance is determined by multiple niche parameters, little consideration has been given to the spatial structure of interacting stressors that may shape local and regional vulnerability to global change. Here, we use spatially explicit mosaics of carbonate chemistry, food availability and temperature spanning 1280 km of coastline to test whether persistent, overlapping environmental mosaics mediate the growth and predation vulnerability of a critical foundation species, the mussel Mytilus californianus. We find growth was highest and predation vulnerability was lowest in dynamic environments with frequent exposure to low pH seawater and consistent food. In contrast, growth was lowest and predation vulnerability highest when exposure to low pH seawater was decoupled from high food availability, or in exceptionally warm locations. These results illustrate how interactions among multiple drivers can cause unexpected, yet persistent geographic mosaics of species performance, interactions and vulnerability to environmental change.


Asunto(s)
Ambiente , Mytilus/fisiología , Conducta Predatoria , Animales , California , Concentración de Iones de Hidrógeno , Oregon , Agua de Mar/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...