Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Clin Chim Acta ; 559: 119690, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677452

RESUMEN

BACKGROUND AND AIMS: Intensive care antibiotic treatment faces challenges due to substantial pharmacokinetic differences in critically ill patients. Individualized antibiotic dosing guided by therapeutic drug monitoring (TDM) is considered to minimize the risk of treatment failure and toxicity. This study aimed to develop a valid method for simultaneous LC-MS/MS quantification of 10 drugs frequently used in intensive care antibiotic therapy for which TDM-guided dosing is recommended: piperacillin, meropenem, flucloxacillin, cefuroxime, vancomycin, colistin A and B, linezolid, ciprofloxacin and tazobactam. METHODS AND RESULTS: Thorough optimization of sample preparation and chromatography resulted in a fast and simple method based on protein precipitation of 50 µL plasma or serum and gradient elution using an Acquity UPLC HSS-T3 column. Electrospray ionization-triple quadrupole mass spectrometry in dynamic multiple reaction monitoring was used for quantification, covering the therapeutic range of each drug compound. Validation following EMA and FDA recommendations, including inter-platform validation and inter-laboratory comparison, demonstrated high accuracy, precision and robustness of the new method. The assay was successfully used to monitor plasma antibiotic levels of critically ill patients (n = 35). CONCLUSION: The established multiplex method covers major drug classes with documented dosing challenges, provides a reliable basis for the implementation of high-throughput TDM, and its application confirmed the clinical impact of TDM in a real-world setting.

2.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
3.
Chem Biol Interact ; 387: 110792, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37944627

RESUMEN

Thiopurine drugs are immunomodulatory antimetabolites relevant for pediatric patients characterized by dose-dependent adverse effects such as myelosuppression and hepatotoxicity, often related to inter-individual differences, involving the activity of important enzymes at the basis of their biotransformation, such as thiopurine S-methyltransferase (TPMT). Surface Enhanced Raman Scattering (SERS) spectroscopy is emerging as a bioanalytical tool and represents a valid alternative in terms of affordable costs, shorter analysis time and easier sample preparation in comparison to the most employed methods for pharmacokinetic analysis of drugs. The aim of this study is to investigate mercaptopurine and thioguanine pharmacokinetics by SERS in cell lysates of a B-lymphoblastoid cell line (NALM-6), that did (TPMT*1) or did not (MOCK) overexpress the wild-type form of TPMT as an in vitro cellular lymphocyte model to discriminate between cells with different levels of TPMT activity on the base of the amount of thioguanosine nucleotides (TGN) metabolites formed. SERS analysis of the cell lysates was carried out using SERS substrates constituted by Ag nanoparticles deposited on paper and parallel samples were used for quantification of thiopurine nucleotides with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A direct SERS detection method has been set up that could be a tool to study thiopurine drug pharmacokinetics in in vitro cellular models to qualitatively discriminate between cells that do and do not overexpress the TPMT enzyme, as an alternative to other more laborious techniques. Results underlined decreased levels of TGN and increased levels of methylated metabolites when TPMT was overexpressed, both after mercaptopurine and thioguanine treatments. A strong positive correlation (Spearman's rank correlation coefficient rho = 0.96) exists between absolute quantification of TGMP (pmol/1 x 106 cells), obtained by LC-MS/MS, and SERS signal (intensity of TGN at 915 cm-1). In future studies, we aim to apply this method to investigate TPMT activity in pediatric patients' leukocytes.


Asunto(s)
Leucemia , Nanopartículas del Metal , Humanos , Niño , Mercaptopurina/metabolismo , Tioguanina/metabolismo , Cromatografía Liquida , Plata , Espectrometría de Masas en Tándem , Metiltransferasas , Nucleótidos , Análisis Espectral
4.
Annu Rev Pharmacol Toxicol ; 64: 65-87, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37585662

RESUMEN

Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.


Asunto(s)
Inteligencia Artificial , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Genotipo , Biomarcadores , Fenotipo
5.
Adv Healthc Mater ; : e2303561, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053301

RESUMEN

Organotypic and microphysiological systems (MPS) that can emulate the molecular phenotype and function of human tissues, such as liver, are increasingly used in preclinical drug development. However, despite their improved predictivity, drug development success rates have remained low with most compounds failing in clinical phases despite promising preclinical data. Here, it is tested whether absorption of small molecules to polymers commonly used for MPS fabrication can impact preclinical pharmacological and toxicological assessments and contribute to the high clinical failure rates. To this end, identical devices are fabricated from eight different MPS polymers and absorption of prototypic compounds with different physicochemical properties are analyzed. It is found that overall absorption is primarily driven by compound hydrophobicity and the number of rotatable bonds. However, absorption can differ by >1000-fold between polymers with polydimethyl siloxane (PDMS) being most absorptive, whereas polytetrafluoroethylene (PTFE) and thiol-ene epoxy (TEE) absorbed the least. Strikingly, organotypic primary human liver cultures successfully flagged hydrophobic hepatotoxins in lowly absorbing TEE devices at therapeutically relevant concentrations, whereas isogenic cultures in PDMS devices are resistant, resulting in false negative safety signals. Combined, these results can guide the selection of MPS materials and facilitate the development of preclinical assays with improved translatability.

6.
Front Pharmacol ; 14: 1279357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053838

RESUMEN

Rationale: Liver cirrhosis is known to affect drug pharmacokinetics, but the functional assessment of the underlying pathophysiological alterations in drug metabolism is difficult. Methods: Cirrhosis in mice was induced by repeated treatment with carbon tetrachloride for 12 months. A cocktail of six drugs was administered, and parent compounds as well as phase I and II metabolites were quantified in blood, bile, and urine in a time-dependent manner. Pharmacokinetics were modeled in relation to the altered expression of metabolizing enzymes. In discrepancy with computational predictions, a strong increase of glucuronides in blood was observed in cirrhotic mice compared to vehicle controls. Results: The deviation between experimental findings and computational simulations observed by analyzing different hypotheses could be explained by increased sinusoidal export and corresponded to increased expression of export carriers (Abcc3 and Abcc4). Formation of phase I metabolites and clearance of the parent compounds were surprisingly robust in cirrhosis, although the phase I enzymes critical for the metabolism of the administered drugs in healthy mice, Cyp1a2 and Cyp2c29, were downregulated in cirrhotic livers. RNA-sequencing revealed the upregulation of numerous other phase I metabolizing enzymes which may compensate for the lost CYP isoenzymes. Comparison of genome-wide data of cirrhotic mouse and human liver tissue revealed similar features of expression changes, including increased sinusoidal export and reduced uptake carriers. Conclusion: Liver cirrhosis leads to increased blood concentrations of glucuronides because of increased export from hepatocytes into the sinusoidal blood. Although individual metabolic pathways are massively altered in cirrhosis, the overall clearance of the parent compounds was relatively robust due to compensatory mechanisms.

7.
Front Pharmacol ; 14: 1128547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089922

RESUMEN

Introduction: Bulevirtide is a first-in-class antiviral drug to treat chronic hepatitis B/D. We investigated the drug-drug interaction potential and pharmacokinetics of high-dose subcutaneous bulevirtide (5 mg twice daily) with organic anion transporting polypeptide 1B1 (OATP1B1) and cytochrome P450 (CYP) 3A4. Methods: This was a single-center, open-label, fixed-sequence drug-drug interaction trial in 19 healthy volunteers. Before and at bulevirtide steady state, participants ingested a single 40 mg dose of pravastatin. A midazolam microdose was applied to quantify CYP3A4 activity. Results: At bulevirtide steady state, pravastatin area under the concentration-time curve (AUC0-∞) increased 1.32-fold (90% CI 1.08-1.61). The 5 mg bulevirtide twice-daily treatment resulted in a mean AUC0-12 of 1210 h*ng/ml (95% CI 1040-1408) and remained essentially unchanged under the influence of pravastatin. CYP3A4 activity did not change to a clinically relevant extent. As expected, total bile acids increased substantially (35-fold) compared to baseline during bulevirtide treatment. All study medication was well tolerated. Discussion: The study demonstrated that high-dose bulevirtide inhibited OATP1B-mediated hepatic uptake of the marker substrate pravastatin but the extent is considered clinically not relevant. Changes in CYP3A4 activity were also not clinically relevant. In conclusion, this study suggests that OATP1B substrate drugs as well as CYP3A4 substrates may safely be used without dose adjustment in patients treated with bulevirtide. However, in patients using high statin doses and where concomitant factors potentially further increase statin exposure, caution may be required when using bulevirtide.

8.
Talanta ; 260: 124578, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119797

RESUMEN

Clinical metabolomics studies often have to cope with limited sample amounts, thus miniaturized liquid chromatography (LC) systems are a promising alternative. Their applicability has already been demonstrated in various fields, including a few metabolomics studies that mainly used reversed-phase chromatography. However, hydrophilic interaction chromatography (HILIC), which is widely used in metabolomics due to its particular suitability for the analysis of polar molecules, has rarely been tested for miniaturized LC-MS analysis of small molecules. In the present work, the suitability of a capillary HILIC (CapHILIC)-QTOF-MS system for non-targeted metabolomics was evaluated based on extracts of porcine formalin-fixed, paraffin-embedded (FFPE) tissue samples. The performance was assessed with respect to the number and retention time span of metabolic features as well as the analytical repeatability, the signal-to-noise ratio and the signal intensity of 16 annotated metabolites from different compound classes. The results were compared with a well established narrow-bore HILIC-QTOF-MS system. Both platforms have detected a similar number of features and performed excellent with respect to retention time stability (median RT span <0.05 min) and analytical repeatability (>75% of features with CV < 20%). The signal areas of all metabolites assessed were increased up to 18-fold by the use of CapHILIC, although the signal-to-noise ratio was only improved for 50% of the metabolites. An even better reproducibility (median CV = 5.2%) and up to 80-fold increase in signal intensity were observed after optimization of CapHILIC conditions for analysis of bile acid standard solutions. Even though the observed improvement for specific bile acids (e.g. taurocholic acid) in biological matrix needs to be evaluated, the platform comparison indicates, that the tested CapHILIC system is particularly suitable for analyses of a less broad metabolite spectrum, and specifically optimized chromatography.


Asunto(s)
Metaboloma , Metabolómica , Animales , Porcinos , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Metabolómica/métodos , Interacciones Hidrofóbicas e Hidrofílicas
9.
Front Bioeng Biotechnol ; 11: 1049564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815881

RESUMEN

In vitro to in vivo extrapolation represents a critical challenge in toxicology. In this paper we explore extrapolation strategies for acetaminophen (APAP) based on mechanistic models, comparing classical (CL) homogeneous compartment pharmacodynamic (PD) models and a spatial-temporal (ST), multiscale digital twin model resolving liver microarchitecture at cellular resolution. The models integrate consensus detoxification reactions in each individual hepatocyte. We study the consequences of the two model types on the extrapolation and show in which cases these models perform better than the classical extrapolation strategy that is based either on the maximal drug concentration (Cmax) or the area under the pharmacokinetic curve (AUC) of the drug blood concentration. We find that an CL-model based on a well-mixed blood compartment is sufficient to correctly predict the in vivo toxicity from in vitro data. However, the ST-model that integrates more experimental information requires a change of at least one parameter to obtain the same prediction, indicating that spatial compartmentalization may indeed be an important factor.

10.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293210

RESUMEN

Women are more prone to develop either hypothyroidism or cholesterol gallstones than men. However, a male predominance in cholesterol gallstones under hypothyroidism was reported. Recently, a novel pathogenic link between thyroid hormone (TH) deficiency and cholesterol gallstones has been described in male mice. Here, we investigate if TH deficiency impacts cholesterol gallstone formation in females by the same mechanism. Three-month-old C57BL/6J mice were randomly divided into a control, a TH deficient, a lithogenic, and a lithogenic + TH deficient group and diet-treated for two, four, and six weeks. Gallstone prevalence, liver function tests, bile composition, hepatic gene expression, and gallbladder aquaporin expression and localization were investigated. Cholesterol gallstones were observed in lithogenic + TH deficient but not lithogenic only female mice. Diminished hydrophilicity of primary bile acids due to decreased gene expression of hepatic detoxification phase II enzymes was observed. A sex-specific expression and localization of hepatobiliary aquaporins involved in transcellular water and glycerol permeability was observed under TH deficient and lithogenic conditions. TH deficiency promotes cholesterol gallstone formation in female C57BL/6J mice by the same mechanism as observed in males. However, cholesterol gallstone prevalence was lower in female than male C57BL/6J mice. Interestingly, the sex-specific expression and localization of hepatobiliary aquaporins could protect female C57BL/6J mice to cholestasis and could reduce biliary water transport in male C57BL/6J mice possibly contributing to the sex-dependent cholesterol gallstone prevalence under TH deficiency.


Asunto(s)
Acuaporinas , Colestasis , Cálculos Biliares , Hipotiroidismo , Femenino , Masculino , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Cálculos Biliares/patología , Glicerol/metabolismo , Colesterol/metabolismo , Hígado/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Colestasis/metabolismo , Ácido Cólico/metabolismo , Hipotiroidismo/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Hormonas Tiroideas/metabolismo , Agua/metabolismo
11.
Front Mol Biosci ; 9: 1004602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310598

RESUMEN

The combination of high-resolution LC-MS untargeted metabolomics with stable isotope-resolved tracing is a promising approach for the global exploration of metabolic pathway activities. In our established workflow we combine targeted isotopologue feature extraction with the non-targeted X13CMS routine. Metabolites, detected by X13CMS as differentially labeled between two biological conditions are subsequently integrated into the original targeted library. This strategy enables monitoring of changes in known pathways as well as the discovery of hitherto unknown metabolic alterations. Here, we demonstrate this workflow in a PTEN (phosphatase and tensin homolog) null breast cancer cell line (MDA-MB-468) exploring metabolic pathway activities in the absence and presence of the selective PI3Kß inhibitor AZD8186. Cells were fed with [U-13C] glucose and treated for 1, 3, 6, and 24 h with 0.5 µM AZD8186 or vehicle, extracted by an optimized sample preparation protocol and analyzed by LC-QTOF-MS. Untargeted differential tracing of labels revealed 286 isotope-enriched features that were significantly altered between control and treatment conditions, of which 19 features could be attributed to known compounds from targeted pathways. Other 11 features were unambiguously identified based on data-dependent MS/MS spectra and reference substances. Notably, only a minority of the significantly altered features (11 and 16, respectively) were identified when preprocessing of the same data set (treatment vs. control in 24 h unlabeled samples) was performed with tools commonly used for label-free (i.e. w/o isotopic tracer) non-targeted metabolomics experiments (Profinder´s batch recursive feature extraction and XCMS). The structurally identified metabolites were integrated into the existing targeted isotopologue feature extraction workflow to enable natural abundance correction, evaluation of assay performance and assessment of drug-induced changes in pathway activities. Label incorporation was highly reproducible for the majority of isotopologues in technical replicates with a RSD below 10%. Furthermore, inter-day repeatability of a second label experiment showed strong correlation (Pearson R 2 > 0.99) between tracer incorporation on different days. Finally, we could identify prominent pathway activity alterations upon PI3Kß inhibition. Besides pathways in central metabolism, known to be changed our workflow revealed additional pathways, like pyrimidine metabolism or hexosamine pathway. All pathways identified represent key metabolic processes associated with cancer metabolism and therapy.

12.
EXCLI J ; 21: 1053-1065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172076

RESUMEN

Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.

13.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806468

RESUMEN

The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Humanos , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Simportadores/metabolismo , Espectrometría de Masas en Tándem , Ácido Taurocólico/metabolismo
14.
Leukemia ; 36(8): 2050-2063, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676454

RESUMEN

We recently reported that miR-146a is differentially expressed in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). In this study, the downstream targets of miR-146a in ALK+ ALCL were investigated by transcriptome analysis, identifying CD147 as potential target gene. Because CD147 is differentially expressed in ALK+ ALCL versus ALK- ALCL and normal T cells, this gene emerged as a strong candidate for the pathogenesis of this tumor. Here we demonstrate that CD147 is a direct target of miR-146 and contributes to the survival and proliferation of ALK+ ALCL cells in vitro and to the engraftment and tumor growth in vivo in an ALK+ ALCL-xenotransplant mouse model. CD147 knockdown in ALK+ ALCL cells resulted in loss of monocarboxylate transporter 1 (MCT1) expression, reduced glucose consumption and tumor growth retardation, as demonstrated by [18F]FDG-PET/MRI analysis. Investigation of metabolism in vitro and in vivo supported these findings, revealing reduced aerobic glycolysis and increased basal respiration in CD147 knockdown. In conclusion, our findings indicate that CD147 is of vital importance for ALK+ ALCL to maintain the high energy demand of rapid cell proliferation, promoting lactate export, and tumor growth. Furthermore, CD147 has the potential to serve as a novel therapeutic target in ALK+ ALCL, and warrants further investigation.


Asunto(s)
Quinasa de Linfoma Anaplásico , Basigina , Metabolismo Energético , Linfoma Anaplásico de Células Grandes , MicroARNs , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Basigina/genética , Basigina/metabolismo , Línea Celular Tumoral , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Regulación Neoplásica de la Expresión Génica , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
15.
Clin Transl Med ; 12(6): e883, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35678045

RESUMEN

BACKGROUND: The metabolic enzyme nicotinamide-N-methyltransferase (NNMT) is highly expressed in various cancer entities, suggesting tumour-promoting functions. We systematically investigated NNMT expression and its metabolic interactions in clear cell renal cell carcinoma (ccRCC), a prominent RCC subtype with metabolic alterations, to elucidate its role as a drug target. METHODS: NNMT expression was assessed in primary ccRCC (n = 134), non-tumour tissue and ccRCC-derived metastases (n = 145) by microarray analysis and/or immunohistochemistry. Findings were validated in The Cancer Genome Atlas (kidney renal clear cell carcinoma [KIRC], n = 452) and by single-cell analysis. Expression was correlated with clinicopathological data and survival. Metabolic alterations in NNMT-depleted cells were assessed by nontargeted/targeted metabolomics and extracellular flux analysis. The NNMT inhibitor (NNMTi) alone and in combination with the inhibitor 2-deoxy-D-glucose for glycolysis and BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl-sulfide) for glutamine metabolism was investigated in RCC cell lines (786-O, A498) and in two 2D ccRCC-derived primary cultures and three 3D ccRCC air-liquid interface models. RESULTS: NNMT protein was overexpressed in primary ccRCC (p = 1.32 × 10-16 ) and ccRCC-derived metastases (p = 3.92 × 10-20 ), irrespective of metastatic location, versus non-tumour tissue. Single-cell data showed predominant NNMT expression in ccRCC and not in the tumour microenvironment. High NNMT expression in primary ccRCC correlated with worse survival in independent cohorts (primary RCC-hazard ratio [HR] = 4.3, 95% confidence interval [CI]: 1.5-12.4; KIRC-HR = 3.3, 95% CI: 2.0-5.4). NNMT depletion leads to intracellular glutamine accumulation, with negative effects on mitochondrial function and cell survival, while not affecting glycolysis or glutathione metabolism. At the gene level, NNMT-depleted cells upregulate glycolysis, oxidative phosphorylation and apoptosis pathways. NNMTi alone or in combination with 2-deoxy-D-glucose and BPTES resulted in inhibition of cell viability in ccRCC cell lines and primary tumour and metastasis-derived models. In two out of three patient-derived ccRCC air-liquid interface models, NNMTi treatment induced cytotoxicity. CONCLUSIONS: Since efficient glutamine utilisation, which is essential for ccRCC tumours, depends on NNMT, small-molecule NNMT inhibitors provide a novel therapeutic strategy for ccRCC and act as sensitizers for combination therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Desoxiglucosa , Glucosa , Glutamina , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Niacinamida/farmacología , Microambiente Tumoral
16.
Clin Pharmacol Ther ; 112(4): 808-816, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538648

RESUMEN

Therapy of molybdenum cofactor (Moco) deficiency has received US Food and Drug Administration (FDA) approval in 2021. Whereas urothione, the urinary excreted catabolite of Moco, is used as diagnostic biomarker for Moco-deficiency, its catabolic pathway remains unknown. Here, we identified the urothione-synthesizing methyltransferase using mouse liver tissue by anion exchange/size exclusion chromatography and peptide mass fingerprinting. We show that the catabolic Moco S-methylating enzyme corresponds to thiopurine S-methyltransferase (TPMT), a highly polymorphic drug-metabolizing enzyme associated with drug-related hematotoxicity but unknown physiological role. Urothione synthesis was investigated in vitro using recombinantly expressed human TPMT protein, liver lysates from Tpmt wild-type and knock-out (Tpmt-/- ) mice as well as human liver cytosol. Urothione levels were quantified by liquid-chromatography tandem mass spectrometry in the kidneys and urine of mice. TPMT-genotype/phenotype and excretion levels of urothione were investigated in human samples and validated in an independent population-based study. As Moco provides a physiological substrate (thiopterin) of TPMT, thiopterin-methylating activity was associated with TPMT activity determined with its drug substrate (6-thioguanin) in mice and humans. Urothione concentration was extremely low in the kidneys and urine of Tpmt-/- mice. Urinary urothione concentration in TPMT-deficient patients depends on common TPMT polymorphisms, with extremely low levels in homozygous variant carriers (TPMT*3A/*3A) but normal levels in compound heterozygous carriers (TPMT*3A/*3C) as validated in the population-based study. Our work newly identified an endogenous substrate for TPMT and shows an unprecedented link between Moco catabolism and drug metabolism. Moreover, the TPMT example indicates that phenotypic consequences of genetic polymorphisms may differ between drug- and endogenous substrates.


Asunto(s)
Metiltransferasas , Cofactores de Molibdeno , Animales , Genotipo , Humanos , Metiltransferasas/fisiología , Ratones , Ratones Noqueados
17.
Cells ; 11(10)2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35626717

RESUMEN

The Hedgehog signaling pathway regulates many processes during embryogenesis and the homeostasis of adult organs. Recent data suggest that central metabolic processes and signaling cascades in the liver are controlled by the Hedgehog pathway and that changes in hepatic Hedgehog activity also affect peripheral tissues, such as the reproductive organs in females. Here, we show that hepatocyte-specific deletion of the Hedgehog pathway is associated with the dramatic expansion of adipose tissue in mice, the overall phenotype of which does not correspond to the classical outcome of insulin resistance-associated diabetes type 2 obesity. Rather, we show that alterations in the Hedgehog signaling pathway in the liver lead to a metabolic phenotype that is resembling metabolically healthy obesity. Mechanistically, we identified an indirect influence on the hepatic secretion of the fibroblast growth factor 21, which is regulated by a series of signaling cascades that are directly transcriptionally linked to the activity of the Hedgehog transcription factor GLI1. The results of this study impressively show that the metabolic balance of the entire organism is maintained via the activity of morphogenic signaling pathways, such as the Hedgehog cascade. Obviously, several pathways are orchestrated to facilitate liver metabolic status to peripheral organs, such as adipose tissue.


Asunto(s)
Proteínas Hedgehog , Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones
18.
Cell Death Discov ; 8(1): 215, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443750

RESUMEN

Enhanced expression of anti-apoptotic B-cell lymphoma 2 (BCL-2) protein is frequent in cancer. Targeting of BCL-2 with the specific inhibitor ABT-199 (Venetoclax) has significant clinical activity in malignant diseases such as chronic lymphocytic leukemia and multiple myeloma. The small molecule drug ABT-199 mimics the pro-apoptotic BCL-2 homology domain 3 of BH3-only proteins and blocks the hydrophobic BC-groove in BCL-2. We have previously shown that ABT-199 synergizes with the proteasome inhibitor (PI) bortezomib in soft tissue sarcoma derived cells and cell lines to induce apoptosis. Synergistic apoptosis induction relies on the pore-forming effector BAX and expression of the pro-apoptotic BH3-only protein NOXA. Bortezomib augments expression of NOXA by blocking its proteasomal degradation. Interestingly, shown here for the first time, expression of NOXA is strongly enhanced by ABT-199 induced integrated stress response (ISR). ISR transcription factors ATF3 & ATF4 mediate transactivation of the BH3-only protein NOXA which specifically inhibits the anti-apoptotic MCL-1. Thus, NOXA potentiates the efficacy of the BCL-2 inhibitor ABT-199 by simultaneous inhibition of MCL-1. Hence, ABT-199 has a double impact by directly blocking anti-apoptotic BCL-2 and inhibiting MCL-1 via transactivated NOXA. By preventing degradation of NOXA PIs synergize with ABT-199. Synergism of ABT-199 and PIs therefore occurs on several, previously unexpected levels. This finding should prompt clinical evaluation of combinatorial regimens in further malignancies.

19.
J Hepatol ; 77(1): 71-83, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35131407

RESUMEN

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Sobredosis de Droga , Acetaminofén/metabolismo , Acetilcisteína/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
20.
Hepatol Commun ; 6(1): 161-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558834

RESUMEN

Mouse models are frequently used to study chronic liver diseases (CLDs). To assess their translational relevance, we quantified the similarity of commonly used mouse models to human CLDs based on transcriptome data. Gene-expression data from 372 patients were compared with data from acute and chronic mouse models consisting of 227 mice, and additionally to nine published gene sets of chronic mouse models. Genes consistently altered in humans and mice were mapped to liver cell types based on single-cell RNA-sequencing data and validated by immunostaining. Considering the top differentially expressed genes, the similarity between humans and mice varied among the mouse models and depended on the period of damage induction. The highest recall (0.4) and precision (0.33) were observed for the model with 12-months damage induction by CCl4 and by a Western diet, respectively. Genes consistently up-regulated between the chronic CCl4 model and human CLDs were enriched in inflammatory and developmental processes, and mostly mapped to cholangiocytes, macrophages, and endothelial and mesenchymal cells. Down-regulated genes were enriched in metabolic processes and mapped to hepatocytes. Immunostaining confirmed the regulation of selected genes and their cell type specificity. Genes that were up-regulated in both acute and chronic models showed higher recall and precision with respect to human CLDs than exclusively acute or chronic genes. Conclusion: Similarly regulated genes in human and mouse CLDs were identified. Despite major interspecies differences, mouse models detected 40% of the genes significantly altered in human CLD. The translational relevance of individual genes can be assessed at https://saezlab.shinyapps.io/liverdiseaseatlas/.


Asunto(s)
Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hepatopatías/genética , Transcriptoma , Animales , Enfermedad Crónica , Regulación hacia Abajo , Humanos , Ratones , Especificidad de la Especie , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA