Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 47(7): 990-1003, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34288034

RESUMEN

AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Glutamina/metabolismo , Neuronas Motoras/patología , Demencia Frontotemporal/genética , Glutamina/genética , Humanos , Intrones/fisiología , Prolina/genética , Prolina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
2.
Front Mol Neurosci ; 14: 627740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986643

RESUMEN

The past decade has seen a rapid acceleration in the discovery of new genetic causes of ALS, with more than 20 putative ALS-causing genes now cited. These genes encode proteins that cover a diverse range of molecular functions, including free radical scavenging (e.g., SOD1), regulation of RNA homeostasis (e.g., TDP-43 and FUS), and protein degradation through the ubiquitin-proteasome system (e.g., ubiquilin-2 and cyclin F) and autophagy (TBK1 and sequestosome-1/p62). It is likely that the various initial triggers of disease (either genetic, environmental and/or gene-environment interaction) must converge upon a common set of molecular pathways that underlie ALS pathogenesis. Given the complexity, it is not surprising that a catalog of molecular pathways and proteostasis dysfunctions have been linked to ALS. One of the challenges in ALS research is determining, at the early stage of discovery, whether a new gene mutation is indeed disease-specific, and if it is linked to signaling pathways that trigger neuronal cell death. We have established a proof-of-concept proteogenomic workflow to assess new gene mutations, using CCNF (cyclin F) as an example, in cell culture models to screen whether potential gene candidates fit the criteria of activating apoptosis. This can provide an informative and time-efficient output that can be extended further for validation in a variety of in vitro and in vivo models and/or for mechanistic studies. As a proof-of-concept, we expressed cyclin F mutations (K97R, S195R, S509P, R574Q, S621G) in HEK293 cells for label-free quantitative proteomics that bioinformatically predicted activation of the neuronal cell death pathways, which was validated by immunoblot analysis. Proteomic analysis of induced pluripotent stem cells (iPSCs) derived from patient fibroblasts bearing the S621G mutation showed the same activation of these pathways providing compelling evidence for these candidate gene mutations to be strong candidates for further validation and mechanistic studies (such as E3 enzymatic activity assays, protein-protein and protein-substrate studies, and neuronal apoptosis and aberrant branching measurements in zebrafish). Our proteogenomics approach has great utility and provides a relatively high-throughput screening platform to explore candidate gene mutations for their propensity to cause neuronal cell death, which will guide a researcher for further experimental studies.

3.
Hum Mol Genet ; 30(11): 971-984, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33729478

RESUMEN

Previously, we identified missense mutations in CCNF that are causative of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Hallmark features of these diseases include the build-up of insoluble protein aggregates as well as the mislocalization of proteins such as transactive response DNA binding protein 43 kDa (TDP-43). In recent years, the dysregulation of SFPQ (splicing factor proline and glutamine rich) has also emerged as a pathological hallmark of ALS/FTD. CCNF encodes for the protein cyclin F, a substrate recognition component of an E3 ubiquitin ligase. We have previously shown that ALS/FTD-linked mutations in CCNF cause disruptions to overall protein homeostasis that leads to a build-up of K48-linked ubiquitylated proteins as well as defects in autophagic machinery. To investigate further processes that may be affected by cyclin F, we used a protein-proximity ligation method, known as Biotin Identification (BioID), standard immunoprecipitations and mass spectrometry to identify novel interaction partners of cyclin F and infer further process that may be affected by the ALS/FTD-causing mutation. Results demonstrate that cyclin F closely associates with proteins involved with RNA metabolism as well as a number of RNA-binding proteins previously linked to ALS/FTD, including SFPQ. Notably, the overexpression of cyclin F(S621G) led to the aggregation and altered subcellular distribution of SFPQ in human embryonic kidney (HEK293) cells, while leading to altered degradation in primary neurons. Overall, our data links ALS/FTD-causing mutations in CCNF to converging pathological features of ALS/FTD and provides a link between defective protein degradation systems and the pathological accumulation of a protein involved in RNA processing and metabolism.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ciclinas/genética , Demencia Frontotemporal/genética , Factor de Empalme Asociado a PTB/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Agregado de Proteínas/genética , Mapas de Interacción de Proteínas/genética , Proteolisis , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/genética
4.
J Neurol Neurosurg Psychiatry ; 91(2): 162-171, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31690696

RESUMEN

OBJECTIVE: Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS: Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS: No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS: Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Proteínas Mitocondriales/genética , Anciano , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Australia , Western Blotting , Encéfalo/patología , Femenino , Técnica del Anticuerpo Fluorescente , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/patología , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Corteza Motora/patología , Médula Espinal/patología , Secuenciación del Exoma , Secuenciación Completa del Genoma
5.
Zebrafish ; 16(1): 8-14, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30300572

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. ALS can be modeled in zebrafish (Danio rerio) through the expression of human ALS-causing genes, such as superoxide dismutase 1 (SOD1). Overexpression of mutated human SOD1 protein causes aberrant branching and shortening of spinal motor axons. Despite this, the functional relevance of this axon morphology remains elusive. Our aim was to determine whether this motor axonopathy is correlated with impaired movement in mutant (MT) SOD1-expressing zebrafish. Transgenic zebrafish embryos that express blue fluorescent protein (mTagBFP) in motor neurons were injected with either wild-type (WT) or MT (A4V) human SOD1 messenger ribonucleic acid (mRNA). At 48 hours post-fertilization, larvae movement (distance traveled during behavioral testing) was examined, followed by quantification of motor axon length. Larvae injected with MT SOD1 mRNA had significantly shorter and more aberrantly branched motor axons (p < 0.002) and traveled a significantly shorter distance during behavioral testing (p < 0.001) when compared with WT SOD1 and noninjected larvae. Furthermore, there was a positive correlation between distance traveled and motor axon length (R2 = 0.357, p < 0.001). These data represent the first correlative investigation of motor axonopathies and impaired movement in SOD1-expressing zebrafish, confirming functional relevance and validating movement as a disease phenotype for the testing of disease treatments for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/fisiología , Movimiento , Mutación , Superóxido Dismutasa-1/genética , Pez Cebra/fisiología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/fisiología , Modelos Animales de Enfermedad , Superóxido Dismutasa-1/metabolismo
7.
Neurodegener Dis ; 17(6): 304-312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131108

RESUMEN

BACKGROUND: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. OBJECTIVE: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. METHODS: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. RESULTS: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. CONCLUSIONS: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Neuronas Motoras/patología , Polimorfismo de Nucleótido Simple/genética , Médula Espinal/patología , Australia/epidemiología , Proteína C9orf72/genética , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Humanos , Masculino
8.
Int J Biochem Cell Biol ; 89: 216-220, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28652210

RESUMEN

Cyclin F, encoded by CCNF, is the substrate recognition component of the Skp1-Cul1-F-box E3 ubiquitin ligase complex, SCFcyclin F. E3 ubiquitin ligases play a key role in ubiquitin-proteasome mediated protein degradation, an essential component of protein homeostatic mechanisms within the cell. By recognising and regulating the availability of several protein substrates, SCFcyclin F plays a role in regulating various cellular processes including replication and repair of DNA and cell cycle checkpoint control. Cyclin F dysfunction has been implicated in various forms of cancer and CCNF mutations were recently linked to familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia, offering a new lead to understanding the pathogenic mechanisms underlying neurodegeneration. In this review, we evaluate the current literature on the function of cyclin F with an emphasis on its roles in cancer and neurodegeneration.


Asunto(s)
Ciclinas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ciclinas/química , Ciclinas/genética , Regulación de la Expresión Génica , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/patología
9.
Hum Mol Genet ; 26(14): 2616-2626, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28444311

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ciclinas/genética , Demencia Frontotemporal/genética , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Axones/patología , Caspasa 3/metabolismo , Muerte Celular/genética , Ciclinas/biosíntesis , Ciclinas/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación Missense , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...