Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Boundary Layer Meteorol ; 184(2): 301-331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814293

RESUMEN

The heterogenous structure of urban environments impacts interactions with radiation, and the intensity of urban-atmosphere exchanges. Numerical weather prediction (NWP) often characterizes the urban structure with an infinite street canyon, which does not capture the three-dimensional urban morphology realistically. Here, the SPARTACUS (Speedy Algorithm for Radiative Transfer through Cloud Sides) approach to urban radiation (SPARTACUS-Urban), a multi-layer radiative transfer model designed to capture three-dimensional urban geometry for NWP, is evaluated with respect to the explicit Discrete Anisotropic Radiative Transfer (DART) model. Vertical profiles of shortwave fluxes and absorptions are evaluated across domains spanning regular arrays of cubes, to real cities (London and Indianapolis). The SPARTACUS-Urban model agrees well with the DART model (normalized bias and mean absolute errors < 5.5%) when its building distribution assumptions are fulfilled (i.e., buildings randomly distributed in the horizontal). For realistic geometry, including real-world building distributions and pitched roofs, SPARTACUS-Urban underestimates the effective albedo (< 6%) and ground absorption (< 16%), and overestimates wall-plus-roof absorption (< 15%), with errors increasing with solar zenith angle. Replacing the single-exponential fit of the distribution of building separations with a two-exponential function improves flux predictions for real-world geometry by up to half. Overall, SPARTACUS-Urban predicts shortwave fluxes accurately for a range of geometries (cf. DART). Comparison with the commonly used single-layer infinite street canyon approach finds SPARTACUS-Urban has an improved performance for randomly distributed and real-world geometries. This suggests using SPARTACUS-Urban would benefit weather and climate models with multi-layer urban energy balance models, as it allows more realistic urban form and vertically resolved absorption rates, without large increases in computational cost or data inputs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-022-00706-9.

2.
Int J Biometeorol ; 64(7): 1233-1245, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32274575

RESUMEN

In human biometeorology, the estimation of mean radiant temperature (MRT) is generally considered challenging. This work presents a general framework to compute the MRT at the global scale for a human subject placed in an outdoor environment and irradiated by solar and thermal radiation both directly and diffusely. The proposed framework requires as input radiation fluxes computed by numerical weather prediction (NWP) models and generates as output gridded globe-wide maps of MRT. It also considers changes in the Sun's position affecting radiation components when these are stored by NWP models as an accumulated-over-time quantity. The applicability of the framework was demonstrated using NWP reanalysis radiation data from the European Centre for Medium-Range Weather Forecasts. Mapped distributions of MRT were correspondingly computed at the global scale. Comparison against measurements from radiation monitoring stations showed a good agreement with NWP-based MRT (coefficient of determination greater than 0.88; average bias equal to 0.42 °C) suggesting its potential as a proxy for observations in application studies.


Asunto(s)
Meteorología , Energía Solar , Humanos , Luz Solar , Temperatura , Tiempo (Meteorología)
3.
Appl Opt ; 45(23): 5984-92, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16926887

RESUMEN

An efficient method is described for the approximate calculation of the intensity of multiply scattered lidar returns. It divides the outgoing photons into three populations, representing those that have experienced zero, one, and more than one forward-scattering event. Each population is parameterized at each range gate by its total energy, its spatial variance, the variance of photon direction, and the covariance of photon direction and position. The result is that for an N-point profile the calculation is O(N2) efficient and implicitly includes up to N-order scattering, making it ideal for use in iterative retrieval algorithms for which speed is crucial. In contrast, models that explicitly consider each scattering order separately are at best O(Nm/m!) efficient for m-order scattering and often cannot be performed to more than the third or fourth order in retrieval algorithms. For typical cloud profiles and a wide range of lidar fields of view, the new algorithm is as accurate as an explicit calculation truncated at the fifth or sixth order but faster by several orders of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...