Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35298158

RESUMEN

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Animales , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Perros , Hipoglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Receptor de Insulina , Porcinos , Porcinos Enanos , Índice Terapéutico
2.
J Sep Sci ; 45(12): 2055-2063, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35108448

RESUMEN

Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Deuterio/química , Deuterio/metabolismo , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Rayos Láser , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
FEBS Lett ; 594(10): 1467-1476, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32053209

RESUMEN

Myc, a transcription factor with oncogenic activity, is upregulated by amplification, translocation, and mutation of the cellular pathways that regulate its stability. Inhibition of the Myc oncogene by various modalities has had limited success. One Myc inhibitor, Omomyc, has limited cellular and in vivo activity. Here, we report a mini-protein, referred to as Mad, which is derived from the cellular Myc antagonist Mxd1. Mad localizes to the nucleus in cells and is 10-fold more potent than Omomyc in inhibiting Myc-driven cell proliferation. Similar to Mxd1, Mad also interacts with Max, the binding partner of Myc, and with the nucleolar upstream binding factor. Mad binds to E-Box DNA in the promoters of Myc target genes and represses Myc-mediated transcription to a greater extent than Omomyc. Overall, Mad appears to be more potent than Omomyc both in vitro and in cells.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/química , Transcripción Genética/efectos de los fármacos , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Línea Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Fragmentos de Péptidos/aislamiento & purificación , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética
4.
Proc Natl Acad Sci U S A ; 111(29): 10520-5, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002468

RESUMEN

Methanogenic archaea lack cysteinyl-tRNA synthetase; they synthesize Cys-tRNA and cysteine in a tRNA-dependent manner. Two enzymes are required: Phosphoseryl-tRNA synthetase (SepRS) forms phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)), which is converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS). This represents the ancestral pathway of Cys biosynthesis and coding in archaea. Here we report a translation factor, SepCysE, essential for methanococcal Cys biosynthesis; its deletion in Methanococcus maripaludis causes Cys auxotrophy. SepCysE acts as a scaffold for SepRS and SepCysS to form a stable high-affinity complex for tRNA(Cys) causing a 14-fold increase in the initial rate of Cys-tRNA(Cys) formation. Based on our crystal structure (2.8-Šresolution) of a SepCysS⋅SepCysE complex, a SepRS⋅SepCysE⋅SepCysS structure model suggests that this ternary complex enables substrate channeling of Sep-tRNA(Cys). A phylogenetic analysis suggests coevolution of SepCysE with SepRS and SepCysS in the last universal common ancestral state. Our findings suggest that the tRNA-dependent Cys biosynthesis proceeds in a multienzyme complex without release of the intermediate and this mechanism may have facilitated the addition of Cys to the genetic code.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/metabolismo , Cisteína/biosíntesis , Methanococcus/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN de Transferencia de Cisteína/metabolismo , Acetilación , Proteínas Arqueales/química , Secuencia Conservada , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Factores de Iniciación de Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Cisteína/química
6.
FEBS Lett ; 586(6): 717-21, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22293502

RESUMEN

5-Methylaminomethyl-2-selenouridine (mnm(5)Se(2)U) is found in the first position of the anticodon in certain tRNAs from bacteria, archaea and eukaryotes. This selenonucleoside is formed in Escherichia coli from the corresponding thionucleoside mnm(5)S(2)U by the monomeric enzyme YbbB. This nucleoside is present in the tRNA of Methanococcales, yet the corresponding 2-selenouridine synthase is unknown in archaea and eukaryotes. Here we report that a bipartite ybbB ortholog is present in all members of the Methanococcales. Gene deletions in Methanococcus maripaludis and in vitro activity assays confirm that the two proteins act in trans to form in tRNA a selenonucleoside, presumably mnm(5)Se(2)U. Phylogenetic data suggest a primal origin of seleno-modified tRNAs.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanococcus/genética , Compuestos de Organoselenio/metabolismo , ARN de Transferencia/metabolismo , Selenio/metabolismo , Tiosulfato Azufretransferasa/metabolismo , Uridina/análogos & derivados , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Ligasas/química , Ligasas/clasificación , Ligasas/genética , Ligasas/metabolismo , Methanococcus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Compuestos de Organoselenio/química , Filogenia , Estructura Terciaria de Proteína , ARN de Transferencia/clasificación , ARN de Transferencia/genética , Alineación de Secuencia , Tiosulfato Azufretransferasa/química , Tiosulfato Azufretransferasa/genética , Uridina/química , Uridina/genética , Uridina/metabolismo
7.
Science ; 333(6046): 1151-4, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868676

RESUMEN

O-Phosphoserine (Sep), the most abundant phosphoamino acid in the eukaryotic phosphoproteome, is not encoded in the genetic code, but synthesized posttranslationally. Here, we present an engineered system for specific cotranslational Sep incorporation (directed by UAG) into any desired position in a protein by an Escherichia coli strain that harbors a Sep-accepting transfer RNA (tRNA(Sep)), its cognate Sep-tRNA synthetase (SepRS), and an engineered EF-Tu (EF-Sep). Expanding the genetic code rested on reengineering EF-Tu to relax its quality-control function and permit Sep-tRNA(Sep) binding. To test our system, we synthesized the activated form of human mitogen-activated ERK activating kinase 1 (MEK1) with either one or two Sep residues cotranslationally inserted in their canonical positions (Sep(218), Sep(222)). This system has general utility in protein engineering, molecular biology, and disease research.


Asunto(s)
Escherichia coli/genética , Código Genético , Ingeniería Genética , Fosfoserina/metabolismo , Modificación Traduccional de las Proteínas , ARN de Transferencia Aminoácido-Específico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón , Cloranfenicol/farmacología , Cloranfenicol O-Acetiltransferasa/genética , Codón de Terminación , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , MAP Quinasa Quinasa 1/biosíntesis , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/genética , Factor Tu de Elongación Peptídica , Ingeniería de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Cisteína/genética , Proteínas Recombinantes de Fusión/biosíntesis , Aminoacilación de ARN de Transferencia
8.
Mol Microbiol ; 81(1): 249-58, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21564332

RESUMEN

In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec) , which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphate synthetase (SelD). A complete in vivo analysis of the archaeal Sec biosynthesis pathway is still unavailable, and the existence of a redundant pathway or of a rescue mechanism based on the conversion of Sep-tRNA(Sec) to Cys-tRNA(Sec) during selenium starvation, cannot be excluded. Here we present a mutational analysis of Sec biosynthesis in Methanococcus maripaludis strain Mm900. Sec formation is abolished upon individually deleting the genes encoding SelD, PSTK or SepSecS; the resulting mutant strains could no longer grow on formate while growth with H(2) + CO(2) remained unaffected. However, deletion of the PSTK and SepSecS genes was not possible unless the selenium-free [NiFe]-hydrogenases Frc and Vhc were expressed. This required the prior deletion of either the gene encoding SelD or that of HrsM, a LysR-type regulator suppressing transcription of the frc and vhc operons in the presence of selenium. These results show that M. maripaludis Mm900 is facultatively selenium-dependent with a single pathway of Sec-tRNA(Sec) formation.


Asunto(s)
Vías Biosintéticas/genética , Methanococcus/genética , Methanococcus/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/biosíntesis , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dióxido de Carbono/metabolismo , Formiatos/metabolismo , Eliminación de Gen , Hidrógeno/metabolismo , Methanococcus/crecimiento & desarrollo
9.
FEBS Lett ; 584(13): 2857-61, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20493852

RESUMEN

The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) into Cys-tRNA(Cys) in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) to selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in both reactions, tRNA(Cys) and tRNA(Sec) differ greatly in sequence and structure. In an Escherichia coli genetic approach that tests for formate dehydrogenase activity in the absence of selenium donor we show that Sep-tRNA(Sec) is a substrate for SepCysS. Since Sec and Cys are the only active site amino acids known to sustain FDH activity, we conclude that SepCysS converts Sep-tRNA(Sec) to Cys-tRNA(Sec), and that Sep is crucial for SepCysS recognition.


Asunto(s)
Cisteína/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Especificidad por Sustrato/genética
10.
IUBMB Life ; 61(1): 35-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18798524

RESUMEN

Selenocysteine (Sec) is the 21st genetically encoded amino acid found in organisms from all three domains of life. Sec biosynthesis is unique in that it always proceeds from an aminoacyl-tRNA precursor. Even though Sec biosynthesis in bacteria was established almost two decades ago, only recently the pathway was elucidated in archaea and eukaryotes. While other aspects of Sec biology have been reviewed previously (Allmang and Krol, Biochimie 2006;88:1561-1571, Hatfield et al., Prog Nucleic Acid Res Mol Biol 2006;81:97-142, Squires and Berry, IUBMB Life 2008;60:232-235), here we review the biochemistry and evolution of Sec biosynthesis and coding and show how the knowledge of an archaeal cysteine biosynthesis pathway helped to uncover the route to Sec formation in archaea and eukaryotes.


Asunto(s)
Archaea/genética , Cisteína/biosíntesis , Evolución Molecular , Código Genético/genética , Genética/historia , Selenocisteína/biosíntesis , Selenocisteína/genética , Archaea/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos
11.
Nucleic Acids Res ; 36(6): 1813-25, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18252769

RESUMEN

Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.


Asunto(s)
Asparagina/biosíntesis , Cisteína/biosíntesis , Glutamina/biosíntesis , Aminoacil-ARN de Transferencia/metabolismo , Selenocisteína/biosíntesis , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo
12.
Int J Syst Evol Microbiol ; 57(Pt 4): 803-808, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17392210

RESUMEN

A novel chemolithoautotrophic and hyperthermophilic member of the genus Ignicoccus was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, to the north of Iceland. The new isolate showed high similarity to the two species described to date, Ignicoccus islandicus and Ignicoccus pacificus, in its physiological properties as well as in its unique cell architecture. However, phylogenetic analysis and investigations on the protein composition of the outer membrane demonstrated that the new isolate was clearly distinct from I. islandicus and I. pacificus. Furthermore, it is the only organism known so far which is able to serve as a host for 'Nanoarchaeum equitans', the only cultivated member of the 'Nanoarchaeota'. Therefore, the new isolate represents a novel species of the genus Ignicoccus, which we name Ignicoccus hospitalis sp. nov. (type strain KIN4/I(T)=DSM 18386(T)=JCM 14125(T)).


Asunto(s)
Desulfurococcaceae/clasificación , Desulfurococcaceae/fisiología , Nanoarchaeota/fisiología , Composición de Base , Crecimiento Quimioautotrófico , Desulfurococcaceae/citología , Desulfurococcaceae/aislamiento & purificación , Islandia , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Filogenia
13.
Proc Natl Acad Sci U S A ; 104(8): 2620-5, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17301225

RESUMEN

A number of archaeal organisms generate Cys-tRNA(Cys) in a two-step pathway, first charging phosphoserine (Sep) onto tRNA(Cys) and subsequently converting it to Cys-tRNA(Cys). We have determined, at 3.2-A resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, alpha(4) synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric (alphabeta)(2) phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Methanococcus/química , Methanococcus/enzimología , Fosfoserina/metabolismo , ARN de Transferencia de Cisteína/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Difosfatos/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Thermus thermophilus/enzimología
14.
Proc Natl Acad Sci U S A ; 103(50): 18923-7, 2006 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-17142313

RESUMEN

The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNA(Sec). Its biosynthesis from seryl-tRNA(Sec) has been established for bacteria, but the mechanism of conversion from Ser-tRNA(Sec) remained unresolved for archaea and eukarya. Here, we provide evidence for a different route present in these domains of life that requires the tRNA(Sec)-dependent conversion of O-phosphoserine (Sep) to Sec. In this two-step pathway, O-phosphoseryl-tRNA(Sec) kinase (PSTK) converts Ser-tRNA(Sec) to Sep-tRNA(Sec). This misacylated tRNA is the obligatory precursor for a Sep-tRNA:Sec-tRNA synthase (SepSecS); this protein was previously annotated as SLA/LP. The human and archaeal SepSecS genes complement in vivo an Escherichia coli Sec synthase (SelA) deletion strain. Furthermore, purified recombinant SepSecS converts Sep-tRNA(Sec) into Sec-tRNA(Sec) in vitro in the presence of sodium selenite and purified recombinant E. coli selenophosphate synthetase (SelD). Phylogenetic arguments suggest that Sec decoding was present in the last universal common ancestor. SepSecS and PSTK coevolved with the archaeal and eukaryotic lineages, but the history of PSTK is marked by several horizontal gene transfer events, including transfer to non-Sec-decoding Cyanobacteria and fungi.


Asunto(s)
Escherichia coli/metabolismo , Methanococcus/metabolismo , Fosfoserina/metabolismo , ARN de Archaea/genética , ARN Bacteriano/genética , Aminoacil-ARN de Transferencia/genética , Selenocisteína/biosíntesis , Animales , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Eliminación de Gen , Humanos , Methanococcus/genética , Filogenia
15.
Proc Natl Acad Sci U S A ; 103(48): 18095-100, 2006 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17110438

RESUMEN

The molecular basis of the genetic code manifests itself in the interaction of the aminoacyl-tRNA synthetases and their cognate tRNAs. The fundamental biological question regarding these enzymes' role in the evolution of the genetic code remains open. Here we probe this question in a system in which the same tRNA species is aminoacylated by two unrelated synthetases. Should this tRNA possess major identity elements common to both enzymes, this would favor a scenario where the aminoacyl-tRNA synthetases evolved in the context of preestablished tRNA identity, i.e., after the universal genetic code emerged. An experimental system is provided by the recently discovered O-phosphoseryl-tRNA synthetase (SepRS), which acylates tRNA(Cys) with phosphoserine (Sep), and the well known cysteinyl-tRNA synthetase, which charges the same tRNA with cysteine. We determined the identity elements of Methanocaldococcus jannaschii tRNA(Cys) in the aminoacylation reaction for the two Methanococcus maripaludis synthetases SepRS (forming Sep-tRNA(Cys)) and cysteinyl-tRNA synthetase (forming Cys-tRNA(Cys)). The major elements, the discriminator base and the three anticodon bases, are shared by both tRNA synthetases. An evolutionary analysis of archaeal, bacterial, and eukaryotic tRNA(Cys) sequences predicted additional SepRS-specific minor identity elements (G37, A47, and A59) and suggested the dominance of vertical inheritance for tRNA(Cys) from a single common ancestor. Transplantation of the identified identity elements into the Escherichia coli tRNA(Gly) scaffold endowed facile phosphoserylation activity on the resulting chimera. Thus, tRNA(Cys) identity is an ancient RNA record that depicts the emergence of the universal genetic code before the evolution of the modern aminoacylation systems.


Asunto(s)
Código Genético/genética , ARN de Transferencia/genética , Aminoacilación , Secuencia de Bases , Escherichia coli/genética , Evolución Molecular , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Filogenia , ARN de Transferencia/química
16.
Nature ; 433(7025): 537-41, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15690044

RESUMEN

Analysis of the genome sequence of the small hyperthermophilic archaeal parasite Nanoarchaeum equitans has not revealed genes encoding the glutamate, histidine, tryptophan and initiator methionine transfer RNA species. Here we develop a computational approach to genome analysis that searches for widely separated genes encoding tRNA halves that, on the basis of structural prediction, could form intact tRNA molecules. A search of the N. equitans genome reveals nine genes that encode tRNA halves; together they account for the missing tRNA genes. The tRNA sequences are split after the anticodon-adjacent position 37, the normal location of tRNA introns. The terminal sequences can be accommodated in an intervening sequence that includes a 12-14-nucleotide GC-rich RNA duplex between the end of the 5' tRNA half and the beginning of the 3' tRNA half. Reverse transcriptase polymerase chain reaction and aminoacylation experiments of N. equitans tRNA demonstrated maturation to full-size tRNA and acceptor activity of the tRNA(His) and tRNA(Glu) species predicted in silico. As the joining mechanism possibly involves tRNA trans-splicing, the presence of an intron might have been required for early tRNA synthesis.


Asunto(s)
Genes Arqueales/genética , Nanoarchaeota/genética , ARN de Archaea/genética , ARN de Transferencia/genética , Trans-Empalme/genética , Aminoacilación , Secuencia de Bases , Biología Computacional , Genoma Arqueal , Genómica , Glutamato-ARNt Ligasa/metabolismo , Histidina-ARNt Ligasa/metabolismo , Intrones/genética , Datos de Secuencia Molecular , Nanoarchaeota/enzimología , Conformación de Ácido Nucleico , ARN de Archaea/química , ARN de Archaea/aislamiento & purificación , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo
17.
Proc Natl Acad Sci U S A ; 100(22): 12984-8, 2003 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-14566062

RESUMEN

The hyperthermophile Nanoarchaeum equitans is an obligate symbiont growing in coculture with the crenarchaeon Ignicoccus. Ribosomal protein and rRNA-based phylogenies place its branching point early in the archaeal lineage, representing the new archaeal kingdom Nanoarchaeota. The N. equitans genome (490,885 base pairs) encodes the machinery for information processing and repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide biosyntheses. It is the smallest microbial genome sequenced to date, and also one of the most compact, with 95% of the DNA predicted to encode proteins or stable RNAs. Its limited biosynthetic and catabolic capacity indicates that N. equitans' symbiotic relationship to Ignicoccus is parasitic, making it the only known archaeal parasite. Unlike the small genomes of bacterial parasites that are undergoing reductive evolution, N. equitans has few pseudogenes or extensive regions of noncoding DNA. This organism represents a basal archaeal lineage and has a highly reduced genome.


Asunto(s)
Archaea/genética , Evolución Biológica , Genoma Arqueal , Arabidopsis/microbiología , Archaea/clasificación , Archaea/patogenicidad , ADN de Archaea/genética , Biblioteca de Genes , Filogenia
18.
Res Microbiol ; 154(3): 165-71, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12706504

RESUMEN

The "Nanoarchaeota" are a novel archaeal phylum, forming a unique, deep branch in the 16S rRNA based phylogenetic tree of life. "Nanoarchaeum equitans", the first cultivated representative, is a hyperthermophilic, anaerobic nano-sized coccus with a genome size of about 490 kb. Growth occurs only in coculture with a new chemolithoautotrophic Ignicoccus species.


Asunto(s)
Archaea/clasificación , Archaea/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Desulfurococcaceae , Evolución Molecular , Genoma Arqueal , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Ribosómico 16S/genética , Alineación de Secuencia
19.
Nature ; 417(6884): 63-7, 2002 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-11986665

RESUMEN

According to small subunit ribosomal RNA (ss rRNA) sequence comparisons all known Archaea belong to the phyla Crenarchaeota, Euryarchaeota, and--indicated only by environmental DNA sequences--to the 'Korarchaeota'. Here we report the cultivation of a new nanosized hyperthermophilic archaeon from a submarine hot vent. This archaeon cannot be attached to one of these groups and therefore must represent an unknown phylum which we name 'Nanoarchaeota' and species, which we name 'Nanoarchaeum equitans'. Cells of 'N. equitans' are spherical, and only about 400 nm in diameter. They grow attached to the surface of a specific archaeal host, a new member of the genus Ignicoccus. The distribution of the 'Nanoarchaeota' is so far unknown. Owing to their unusual ss rRNA sequence, members remained undetectable by commonly used ecological studies based on the polymerase chain reaction. 'N. equitans' harbours the smallest archaeal genome; it is only 0.5 megabases in size. This organism will provide insight into the evolution of thermophily, of tiny genomes and of interspecies communication.


Asunto(s)
Archaea/clasificación , Archaea/fisiología , Calor , Simbiosis , Archaea/genética , Archaea/ultraestructura , Secuencia de Bases , Evolución Biológica , Southern Blotting , Genoma Arqueal , Microscopía Electrónica , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Archaea/química , ARN de Archaea/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Terminología como Asunto
20.
Syst Appl Microbiol ; 25(4): 551-4, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12583716

RESUMEN

We screened samples from high temperature biotopes for 16S rRNA genes of the novel archaeal phylum "Nanoarchaeota". Positive PCR amplifications were obtained from Yellowstone National Park, Uzon Caldera, and an abyssal vent system. These sequences form a cluster with the sequence of "Nanoarchaeum equitans", indicating a wide distribution of this phylum.


Asunto(s)
Archaea/clasificación , ADN de Archaea/análisis , Ecología , Calor , ARN Ribosómico 16S/análisis , Archaea/genética , Secuencia de Bases , Datos de Secuencia Molecular , Filogenia , Plásmidos/análisis , Plásmidos/genética , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA