Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701101

RESUMEN

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Asunto(s)
Cognición , Giro del Cíngulo , Histamina , Inflamación , Lipopolisacáridos , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Inflamación/metabolismo , Ratones , Masculino , Histamina/sangre , Histamina/metabolismo , Ácido Kaínico , Interleucina-6/sangre , Interleucina-6/metabolismo , Conducta Animal , Red Nerviosa/fisiopatología , Ratones Endogámicos C57BL
2.
Neuroscience ; 536: 12-20, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37944580

RESUMEN

The basolateral amygdaloid complex (BLA) is critically involved in emotional behaviors, such as aversive memory formation. In particular, fear memory after cued fear conditioning is strongly associated with the BLA, whereas both the BLA and hippocampus are essential for contextual fear memory formation. In the present study, we examined the effects of acute (3 h) sleep deprivation (SD) on BLA-associated fear memory in juvenile (P24-32) rats and performed in vitro electrophysiology using whole-cell patch clamping from the basolateral nucleus (BA) of the BLA. BA projection neurons exhibit the network oscillation, i.e., spontaneous oscillatory bursts of inhibitory transmission at 0.1-3 Hz, as previously reported. In the present study, SD either before or after fear conditioning (FC) disturbed the acquisition of tone-associated fear memory without significant effects on contextual fear memory. FC reduced the power of the oscillatory activity, but SD did not further reduce the oscillation power. Oscillation power was correlated with tone-associated freezing rate (FR) in SD-free fear-conditioned rats, but this relation was disrupted in SD treated group. Rhythm index (RI), the rhythmicity of the oscillation, quantified by autocorrelation analysis, also correlated with tone-associated FR in the combined data, including FC alone and FC with SD. These results suggest that slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.


Asunto(s)
Complejo Nuclear Basolateral , Privación de Sueño , Ratas , Animales , Amígdala del Cerebelo/fisiología , Memoria/fisiología , Señales (Psicología) , Complejo Nuclear Basolateral/fisiología , Miedo/fisiología
3.
Mol Pain ; 19: 17448069231222403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073236

RESUMEN

Background: Trigeminal nerve injury causes orofacial pain that can interfere with activities of daily life. However, the underlying mechanism remains unknown, and the appropriate treatment has not been established yet. This study aimed to examine the involvement of interferon gamma (IFN-γ) signaling in the spinal trigeminal caudal subnucleus (Vc) in orofacial neuropathic pain. Methods: Infraorbital nerve (ION) injury (IONI) was performed in rats by partial ION ligation. The head-withdrawal reflex threshold (HWT) to mechanical stimulation of the whisker pad skin was measured in IONI or sham rats, as well as following a continuous intracisterna magna administration of IFN-γ and a mixture of IFN-γ and fluorocitrate (inhibitor of astrocytes activation) in naïve rats, or an IFN-γ antagonist in IONI rats. The IFN-γ receptor immunohistochemistry and IFN-γ Western blotting were analyzed in the Vc after IONI or sham treatment. The glial fibrillary acid protein (GFAP) immunohistochemistry and Western blotting were also analyzed after administration of IFN-γ and the mixture of IFN-γ and fluorocitrate. Moreover, the change in single neuronal activity in the Vc was examined in the IONI, sham, and IONI group administered IFN-γ antagonist. Results: The HWT decreased after IONI. The IFN-γ and IFN-γ receptor were upregulated after IONI, and the IFN-γ receptor was expressed in Vc astrocytes. IFN-γ administration decreased the HWT, whereas the mixture of IFN-γ and fluorocitrate recovered the decrement of HWT. IFN-γ administration upregulated GFAP expression, while the mixture of IFN-γ and fluorocitrate recovered the upregulation of GFAP expression. IONI significantly enhanced the neuronal activity of the mechanical-evoked responses, and administration of an IFN-γ antagonist significantly inhibited these enhancements. Conclusions: IFN-γ signaling through the receptor in astrocytes is a key mechanism underlying orofacial neuropathic pain associated with trigeminal nerve injury. These findings will aid in the development of therapeutics for orofacial neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos del Nervio Trigémino , Ratas , Animales , Interferón gamma , Astrocitos/metabolismo , Ratas Sprague-Dawley , Neuralgia/metabolismo , Dolor Facial/metabolismo , Traumatismos del Nervio Trigémino/complicaciones
4.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838226

RESUMEN

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Asunto(s)
Dolor en Cáncer , Carcinoma de Células Escamosas , Glosalgia , Neoplasias de la Lengua , Animales , Ratas , Dolor en Cáncer/metabolismo , Glosalgia/metabolismo , Dolor/metabolismo , Fosforilación , Receptor PAR-2/metabolismo , Lengua/metabolismo , Neoplasias de la Lengua/metabolismo , Nervio Trigémino/metabolismo , Canales Catiónicos TRPV/metabolismo , Tripsina/metabolismo , Tripsina/farmacología
5.
Neuroscience ; 519: 60-72, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36958596

RESUMEN

Neonatal pain experiences including traumatic injury influence negatively on development of nociceptive circuits, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. The whisker pad skin was incised on postnatal day 4 and week 7 (Incision-Incision group). Compared to the group without neonatal incision (Sham-Incision group), mechanical hypersensitivity in the whisker pad skin was enhanced in Incision-Incision group. The number of Nav1.8-immunoreactive TG neurons and the amount of CCL2 expressed in the macrophages and satellite glial cells in the TG were increased on day 14 after re-incision in the Incision-Incision group, compared with Sham-Incision group. Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.


Asunto(s)
Hiperalgesia , Herida Quirúrgica , Ratas , Masculino , Animales , Hiperalgesia/etiología , Ratas Sprague-Dawley , Umbral del Dolor , Dolor Facial/patología , Piel , Herida Quirúrgica/complicaciones , Ganglio del Trigémino
6.
Healthcare (Basel) ; 10(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36360513

RESUMEN

Japan's universal healthcare insurance is facing economic challenges due to the advanced aging society, however, objective data of dental expenditure has never been introduced. This study aimed to identify the associated factors with dental expenditures using government-provided digitized insurance claims data and calculated the spending in the context of dental cost per person (DCPP). Seven associated factors analyzed were age, demographic, geographic, socioeconomic, regional wealth, the impact of the 8020-national campaign implementation (keep 20 teeth at age 80), and the effect of the home-visit dentistry for the elders. The average DCPP was high in older populations (75+) in all prefectures. The prefectures with the highest and lowest DCPP were significant compared to other states and retained their respective places in the cost hierarchy over the four years. The prefectures with more citizens participating in government assistance programs (GAP) had greater DCPPs. Dental costs were significantly related to geographic regions, age, per capita income, government assistance program prevalence, office complete denture frequency, and home visit care per patient. With a growing aging population, dental care costs will continue to increase, burdening its fiscal future. Associated factors identified should be considered to control the contentious increase of healthcare cost.

7.
Int J Implant Dent ; 8(1): 14, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35368208

RESUMEN

BACKGROUND: This study aimed to collect data regarding patient perception and knowledge of dental implants. It was conducted with the hope that the data would provide dental professionals and policymakers with a better understanding of ways to promote implant therapy. METHODS: An anonymous online survey with 10 questions was distributed through 12 dental offices in Tokyo and provincial cities in Japan to assess patient perception and knowledge of dental implants. Harvard Medical School's IRB approved this study. RESULTS: We collected data from 1172 patients (59% female, 41% male). The most common perceptions of implant therapy were that it was "expensive," "advanced," and "scary". Patients' implant knowledge came primarily from magazines or books, while professional dental societies/associations were the least sought out source of information. Patients believed that the purpose of dental implants was to avoid dentures and improve chewing function. Their primary concerns about dental implants were the cost and longevity. Approximately 12% of patients with dental implants and 61% of patients without implants did not know that bone grafts may be required and that sedation during surgery was an option. For patients who experienced sedation during the procedure, 60% of them want it for future surgeries. Patients also had limited knowledge of bone-graft materials and the effects of CBCT radiation; 75% of the patients expressed concerns over the safety of graft materials and radiation exposure. For patients with a history of dental implant therapy, 80% of them would recommend dental implants to their family and friends. CONCLUSIONS: Overall, patients' experiences with dental implant therapy were positive, but there was a lack of patient education regarding dental implants and their associated procedures. Dental professionals need to take the initiative to improve patient education.


Asunto(s)
Implantes Dentales , Estudios Transversales , Femenino , Humanos , Japón , Masculino , Percepción , Encuestas y Cuestionarios
8.
Front Neurosci ; 15: 712261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616273

RESUMEN

Perinatal exposure to Bisphenol A (BPA) at a very low dose may modulate the development of synapses of the hippocampus during growth to adulthood. Here, we demonstrate that perinatal exposure to 30 µg BPA/kg per mother's body weight/day significantly altered the dendritic spines of the grownup rat hippocampus. The density of the spine was analyzed by imaging of Lucifer Yellow-injected CA1 glutamatergic neurons in adult hippocampal slices. In offspring 3-month male hippocampus, the total spine density was significantly decreased by BPA exposure from 2.26 spines/µm (control, no BPA exposure) to 1.96 spines/µm (BPA exposure). BPA exposure considerably changed the normal 4-day estrous cycle of offspring 3-month females, resulting in a 4∼5 day estrous cycle with 2-day estrus stages in most of the subjects. In the offspring 3-month female hippocampus, the total spine density was significantly increased by BPA exposure at estrus stage from 2.04 spines/µm (control) to 2.25 spines/µm (BPA exposure). On the other hand, the total spine density at the proestrus stage was moderately decreased from 2.33 spines/µm (control) to 2.19 spines/µm (BPA exposure). Thus, after the perinatal exposure to BPA, the total spine density in males became lower than that in females. Concerning the BPA effect on the morphology of spines, the large-head spine was significantly changed with its significant decrease in males and moderate change in females.

9.
Neuroscience ; 437: 172-183, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32335214

RESUMEN

The anterior cingulate cortex (ACC) is vulnerable to stress. Its dysfunction is observed in psychiatric disorders manifested as alterations in network oscillations. Mechanisms linking stress load to disturbed emotional-cognitive behaviors are of essential importance to further elucidate therapeutic strategies for psychiatric diseases. Here, we analyzed the effects of chronic restraint stress (CRS) load in juvenile mice on kainic acid (KA)-induced network oscillations in ACC slice preparations and on the forced swim test (FST). The immobility time (IT) was shortened at the beginning of the FST in CRS mice. Power spectral density (PSD) obtained from KA-induced oscillations in field potentials in the superficial layers of the ACC were altered in slices from the CRS mice. The PSD was decreased in CRS mice at the alpha (8-12 Hz), beta (13-30 Hz), low gamma (30-50 Hz), and high gamma (50-80 Hz) components. Noradrenaline increased the PSD of the theta (3-8 Hz) components in both the control and CRS groups, and also in alpha components only in the CRS group. Dopamine did not modulate the PSD of any frequency components in the control mice, whereas it enhanced the PSD of theta and alpha components in CRS mice. It was suggested that chronic stress load affects the dynamics of the network oscillations in the ACC with enhanced cathecolaminergic modulation.


Asunto(s)
Giro del Cíngulo , Restricción Física , Animales , Ácido Kaínico , Ratones
10.
Neuroscience ; 401: 73-83, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30654002

RESUMEN

The amygdala is concerned with the emotional memory consolidation, and is known as a stress-vulnerable region of the brain. Slow network oscillation is considered to play roles in memory consolidation during sleep. We investigated the relationship between the sleep and oscillation in the basolateral nucleus (BL) of the amygdala, in which burst firing is preferentially observed during sleep and the slow inhibitory oscillation is recorded from projection neuron. We examined whether sleep deprivation (SD) alters the properties of the network inhibition by whole-cell recordings from BL projection neurons and interneurons of the slice preparation of the juvenile rats. The level of the oscillatory network inhibition, measured as summed power of the spectral density between 0.1 and 3 Hz of the synaptic currents in the projection neurons, was significantly attenuated by acute (3 h) SD in older (P20-24) but not in younger (P15-19) animals. This reduction was mainly derived from the reduced peak amplitude of periodic IPSC bursts. In inhibitory interneurons in BL, spontaneous firings were reduced in older SD rats. The spike threshold of interneurons was increased and the power of the periodic excitatory transmission was reduced in the SD rats. Moreover, a reduction in input resistance in projection neurons was observed in SD rats without significant difference in the excitability which was measured by the spike number induced by depolarizing currents. These results suggest that SD stress affects the network oscillatory property accompanied by changes of individual neuronal excitability and synaptic communications.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Interneuronas/fisiología , Privación de Sueño/fisiopatología , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
11.
Cereb Cortex ; 29(6): 2499-2508, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850790

RESUMEN

d-Aspartate (d-Asp), the stereoisomer of l-aspartate, has a role in memory function in rodents. However, the mechanism of the effect of d-Asp has not been fully understood. In this study, we hypothesized that ingested d-Asp directly reaches the hippocampal tissues via the blood circulation and modifies the functional connectivity between hippocampus and other regions through spinogenesis in hippocampal CA1 neurons. The spinogenesis induced by the application of d-Asp was investigated using rat acute hippocampal slices. The density of CA1 spines was increased following 21 and 100 µM d-Asp application. The nongenomic spine increase pathway involved LIM kinase. In parallel to the acute slice study, brain activation was investigated in awake rats using functional MRI following the intragastric administration of 5 mM d-Asp. Furthermore, the concentration of d-Asp in the blood serum and hippocampus was significantly increased 15 min after intragastric administration of d-Asp. A functional connectivity by awake rat fMRI demonstrated increased slow-frequency synchronization in the hippocampus and other regions, including the somatosensory cortex, striatum, and the nucleus accumbens, 10-20 min after the start of d-Asp administration. These results suggest that ingested d-Asp reaches the brain through the blood circulation and modulates hippocampal neural networks through the modulation of spines.


Asunto(s)
Ácido D-Aspártico/farmacología , Espinas Dendríticas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Animales , Espinas Dendríticas/fisiología , Hipocampo/fisiología , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Wistar
12.
Artículo en Inglés | MEDLINE | ID: mdl-29740398

RESUMEN

The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17ß-estradiol (17ß-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17ß-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.

13.
Neurochem Int ; 119: 140-150, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28844489

RESUMEN

Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Lípidos , Neuronas/metabolismo , Animales , Gangliósido G(M1)/metabolismo , Microdominios de Membrana/metabolismo , Ratones Endogámicos C57BL
14.
Horm Behav ; 74: 149-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26122288

RESUMEN

This article is part of a Special Issue "Estradiol and cognition". Estradiol (E2) is locally synthesized within the hippocampus and the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. The molecular mechanisms of modulation through the synaptic estrogen receptor (ER) and its downstream signaling, however, are largely unknown in the dentate gyrus (DG). We investigated the E2-induced modulation of dendritic spines in male adult rat hippocampal slices by imaging Lucifer Yellow-injected DG granule cells. Treatments with 1 nM E2 increased the density of spines by approximately 1.4-fold within 2h. Spine head diameter analysis showed that the density of middle-head spines (0.4-0.5 µm) was significantly increased. The E2-induced spine density increase was suppressed by blocking Erk MAPK, PKA, PKC and LIMK. These suppressive effects by kinase inhibitors are not non-specific ones because the GSK-3ß antagonist did not inhibit E2-induced spine increase. The ER antagonist ICI 182,780 also blocked the E2-induced spine increase. Taken together, these results suggest that E2 rapidly increases the density of spines through kinase networks that are driven by synaptic ER.


Asunto(s)
Espinas Dendríticas/fisiología , Giro Dentado/citología , Estradiol/fisiología , Proteínas Quinasas/fisiología , Animales , Recuento de Células , Espinas Dendríticas/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Wistar
15.
J Endocrinol ; 226(2): M13-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26034071

RESUMEN

The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.


Asunto(s)
Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Neuronas/citología , Animales , Forma de la Célula/fisiología , Corticosterona/farmacología , Espinas Dendríticas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
J Physiol Sci ; 65(3): 253-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25715777

RESUMEN

We investigated age-induced changes in mRNA expression profiles of sex-steroidogenic enzymes and sex-steroid receptors in 3-, 12-, and 24-month-old male rat brain subregions [cerebral cortex (CC), hypothalamus (Hy) and cerebellum (CL)]. In many cases, the expression levels of mRNA decreased with age for androgen synthesis enzyme systems, including Cyp17a1, Hsd17b and Srd5a in the CC and CL, but not in the Hy. Estradiol synthase Cyp19a1 did not show age-induced decline in the Hy, and nearly no expression of Cyp19a1 was observed in the CC and CL over 3-24 m. Androgen receptor Ar increased in the Hy but decreased in the CC with age. Estrogen receptor Esr1 increased in the CC and Hy, and did not change in the CL with age. Esr2 did not change in the CC and Hy, but decreased in the CL with age. As a comparison, age-induced changes of brain-derived neurotrophic factor mRNA were also investigated.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Envejecimiento/genética , Animales , Aromatasa/genética , Aromatasa/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Hipotálamo/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
17.
Brain Res ; 1621: 147-61, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25595055

RESUMEN

Estradiol (E2) is locally synthesized within the hippocampus in addition to the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. Molecular mechanisms of modulation through synaptic estrogen receptor (ER) and its downstream signaling, however, have been still unknown. We investigated induction of LTP by the presence of E2 upon weak theta burst stimulation (weak-TBS) in CA1 region of adult male hippocampus. Since only weak-TBS did not induce full-LTP, weak-TBS was sub-threshold stimulation. We observed LTP induction by the presence of E2, after incubation of hippocampal slices with 10nM E2 for 30 min, upon weak-TBS. This E2-induced LTP was blocked by ICI, an ER antagonist. This E2-LTP induction was inhibited by blocking Erk MAPK, PKA, PKC, PI3K, NR2B and CaMKII, individually, suggesting that Erk MAPK, PKA, PKC, PI3K and CaMKII may be involved in downstream signaling for activation of NMDA receptors. Interestingly, dihydrotestosterone suppressed the E2-LTP. We also investigated rapid changes of dendritic spines (=postsynapses) in response to E2, using hippocampal slices from adult male rats. We found 1nM E2 increased the density of spines by approximately 1.3-fold within 2h by imaging Lucifer Yellow-injected CA1 pyramidal neurons. The E2-induced spine increase was blocked by ICI. The increase in spines was suppressed by blocking PI3K, Erk MAPK, p38 MAPK, PKA, PKC, LIMK, CaMKII or calcineurin, individually. On the other hand, blocking JNK did not inhibit the E2-induced spine increase. Taken together, these results suggest that E2 rapidly induced LTP and also increased the spine density through kinase networks that are driven by synaptic ER. This article is part of a Special Issue entitled SI: Brain and Memory.


Asunto(s)
Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Estradiol/fisiología , Potenciación a Largo Plazo , Proteínas Quinasas/metabolismo , Células Piramidales/fisiología , Transducción de Señal , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/efectos de los fármacos , Estimulación Eléctrica , Estradiol/farmacología , Quinasas Lim/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Masculino , Fosfatidilinositol 3-Quinasa/metabolismo , Proteína Quinasa C/metabolismo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Brain Res ; 1621: 121-32, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25511993

RESUMEN

Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory.


Asunto(s)
Andrógenos/fisiología , Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Dihidrotestosterona/farmacología , Sinapsis/fisiología , Testosterona/fisiología , Andrógenos/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Masculino , Ratas , Ratas Wistar , Receptores Androgénicos/fisiología , Sinapsis/efectos de los fármacos , Testosterona/farmacología
19.
Brain Res ; 1621: 133-46, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25498865

RESUMEN

Rapid modulation of hippocampal synaptic plasticity through synaptic estrogen receptors is an essential topic. We analyzed estradiol-induced modulation of CA1 dendritic spines using adult male ERαKO and ERßKO mice. A 2h treatment of estradiol particularly increased the density of middle-head spines (diameter 0.3-0.4 µm) in wild type mouse hippocampal slices. The enhancement of spinogenesis was completely suppressed by MAP kinase inhibitor. Estradiol-induced increase in middle-head spines was observed in ERßKO mice (which express ERα), but not in ERαKO, indicating that ERα is necessary for the spinogenesis. Direct observation of the dynamic estradiol-induced enhancing effect on rapid spinogenesis was performed using time-lapse imaging of spines in hippocampal live slices from yellow fluorescent protein expressed mice. Both appearance and disappearance of spines occurred, and the number of newly appeared spines was significantly greater than that of disappeared spines, resulting in the net increase of the spine density within 2h. As another type of synaptic modulation, we observed that estradiol rapidly enhanced N-methyl-D-aspartate (NMDA)-induced long-term depression (LTD) in CA1 of the wild type mouse hippocampus. In contrast, estradiol did not enhance NMDA-LTD in ERαKO mice, indicating the involvement of ERα in the estrogen signaling. This article is part of a Special Issue entitled SI: Brain and Memory.


Asunto(s)
Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Estradiol/fisiología , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/fisiología , Depresión Sináptica a Largo Plazo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Artículo en Inglés | MEDLINE | ID: mdl-24917791

RESUMEN

Activin A is known as a neuroprotective factor produced upon acute excitotoxic injury of the hippocampus (in pathological states). We attempt to reveal the role of activin as a neuromodulator in the adult male hippocampus under physiological conditions (in healthy states), which remains largely unknown. We showed endogenous/basal expression of activin in the hippocampal neurons. Localization of activin receptors in dendritic spines (=postsynapses) was demonstrated by immunoelectron microscopy. The incubation of hippocampal acute slices with activin A (10 ng/mL, 0.4 nM) for 2 h altered the density and morphology of spines in CA1 pyramidal neurons. The total spine density increased by 1.2-fold upon activin treatments. Activin selectively increased the density of large-head spines, without affecting middle-head and small-head spines. Blocking Erk/MAPK, PKA, or PKC prevented the activin-induced spinogenesis by reducing the density of large-head spines, independent of Smad-induced gene transcription which usually takes more than several hours. Incubation of acute slices with activin for 2 h induced the moderate early long-term potentiation (moderate LTP) upon weak theta burst stimuli. This moderate LTP induction was blocked by follistatin, MAPK inhibitor (PD98059) and inhibitor of NR2B subunit of NMDA receptors (Ro25-6981). It should be noted that the weak theta burst stimuli alone cannot induce moderate LTP. These results suggest that MAPK-induced phosphorylation of NMDA receptors (including NR2B) may play an important role for activin-induced moderate LTP. Taken together, the current results reveal interesting physiological roles of endogenous activin as a rapid synaptic modulator in the adult hippocampus.


Asunto(s)
Receptores de Activinas/metabolismo , Activinas/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Receptores de Activinas/genética , Activinas/genética , Activinas/farmacología , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...