Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(11): e3001886, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36417471

RESUMEN

The influence of protocol standardization between laboratories on their replicability of preclinical results has not been addressed in a systematic way. While standardization is considered good research practice as a means to control for undesired external noise (i.e., highly variable results), some reports suggest that standardized protocols may lead to idiosyncratic results, thus undermining replicability. Through the EQIPD consortium, a multi-lab collaboration between academic and industry partners, we aimed to elucidate parameters that impact the replicability of preclinical animal studies. To this end, 3 experimental protocols were implemented across 7 laboratories. The replicability of results was determined using the distance travelled in an open field after administration of pharmacological compounds known to modulate locomotor activity (MK-801, diazepam, and clozapine) in C57BL/6 mice as a worked example. The goal was to determine whether harmonization of study protocols across laboratories improves the replicability of the results and whether replicability can be further improved by systematic variation (heterogenization) of 2 environmental factors (time of testing and light intensity during testing) within laboratories. Protocols were tested in 3 consecutive stages and differed in the extent of harmonization across laboratories and standardization within laboratories: stage 1, minimally aligned across sites (local protocol); stage 2, fully aligned across sites (harmonized protocol) with and without systematic variation (standardized and heterogenized cohort); and stage 3, fully aligned across sites (standardized protocol) with a different compound. All protocols resulted in consistent treatment effects across laboratories, which were also replicated within laboratories across the different stages. Harmonization of protocols across laboratories reduced between-lab variability substantially compared to each lab using their local protocol. In contrast, the environmental factors chosen to introduce systematic variation within laboratories did not affect the behavioral outcome. Therefore, heterogenization did not reduce between-lab variability further compared to the harmonization of the standardized protocol. Altogether, these findings demonstrate that subtle variations between lab-specific study protocols may introduce variation across independent replicate studies even after protocol harmonization and that systematic heterogenization of environmental factors may not be sufficient to account for such between-lab variation. Differences in replicability of results within and between laboratories highlight the ubiquity of study-specific variation due to between-lab variability, the importance of transparent and fine-grained reporting of methodologies and research protocols, and the importance of independent study replication.


Asunto(s)
Reproducibilidad de los Resultados , Proyectos de Investigación , Animales , Ratones , Ratones Endogámicos C57BL
2.
J Neurosci Methods ; 300: 92-102, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28445709

RESUMEN

BACKGROUND: There is a need for better joint pain treatment, but development of new medication has not been successful. Pre-clinical models with readouts that better reflect the clinical situation are needed. In patients with joint pain, pain at rest and pain at walking are two major complaints. NEW METHOD: We describe a new way of calculating results from gait analysis using the CatWalk™ setup. Rats with monoarthritis induced by injection of Complete Freund's Adjuvant (CFA) intra-articularly into the ankle joint of one hind limb were used to assess gait and dynamic weight bearing. RESULTS: The results show that dynamic weight bearing was markedly reduced for the injected paw. Gait parameters such as amount of normal step sequences, walking speed and duration of step placement were also affected. Treatment with naproxen (an NSAID commonly used for inflammatory pain) attenuated the CFA-induced effects. Pregabalin, which is used for neuropathic pain, had no effect. COMPARISON WITH EXISTING METHODS: Reduced dynamic weight bearing during locomotion, assessed and calculated in the way we present here, showed a dose-dependent and lasting normalization after naproxen treatment. In contrast, static weight bearing while standing (Incapacitance tester) showed a significant effect for a limited time only. Mechanical sensitivity (von Frey Optihairs) was completely normalized by naproxen, and the window for testing pharmacological effect disappeared. CONCLUSIONS: Objective and reproducible effects, with an endpoint showing face validity compared to pain while walking in patients with joint pain, are achieved by a new way of calculating dynamic weight bearing in monoarthritic rats.


Asunto(s)
Articulación del Tobillo/fisiopatología , Antiinflamatorios no Esteroideos/farmacología , Artralgia/fisiopatología , Conducta Animal/fisiología , Análisis de la Marcha/métodos , Marcha/fisiología , Naproxeno/farmacología , Soporte de Peso/fisiología , Analgésicos/farmacología , Animales , Articulación del Tobillo/efectos de los fármacos , Artralgia/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Marcha/efectos de los fármacos , Masculino , Pregabalina/farmacología , Ratas , Ratas Wistar
3.
Basic Clin Pharmacol Toxicol ; 113(4): 239-49, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23718812

RESUMEN

The α2-adrenoceptors (ARs) are important modulators of a wide array of physiological responses. As only a few selective compounds for the three α2-AR subtypes (α2A , α2B and α2C ) have been available, the pharmacological profile of a new α2C-selective AR antagonist ORM-10921 is reported. Standard in vitro receptor assays and antagonism of α2, and α1-AR agonist-evoked responses in vivo were used to demonstrate the α2C-AR selectivity for ORM-10921 which was tested in established behavioural models related to schizophrenia and cognitive dysfunction with an emphasis on pharmacologically induced hypoglutamatergic state by phencyclidine or MK-801. The Kb values of in vitro α2C-AR antagonism for ORM-10921 varied between 0.078-1.2 nM depending on the applied method. The selectivity ratios compared to α2A-AR subtype and other relevant receptors were 10-100 times in vitro. The in vivo experiments supported its potent α2C-antagonism combined with only a weak α2A-antagonism. In the pharmacodynamic microdialysis study, ORM-10921 was found to increase extracellular dopamine levels in prefrontal cortex in the baseline conditions. In the behavioural tests, ORM-10921 displayed potent antidepressant and antipsychotic-like effects in the forced swimming test and prepulse-inhibition models analogously with the previously reported results with structurally different α2C-selective AR antagonist JP-1302. Our new results also indicate that ORM-10921 alleviated the NMDA-antagonist-induced impairments in social behaviour and watermaze navigation. This study extends and further validates the concept that α2C -AR is a potential therapeutic target in CNS disorders such as schizophrenia or Alzheimer's disease and suggests the potential of α2C-antagonism to treat such disorders.


Asunto(s)
Acridinas/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Benzofuranos/farmacología , Sistema Nervioso Central/efectos de los fármacos , Piperazinas/farmacología , Quinolizidinas/farmacología , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Animales , Antidepresivos/farmacología , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/fisiopatología , Maleato de Dizocilpina/farmacología , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Fenciclidina/farmacología , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA