Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Crit Care ; 17(6): R303, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24377654

RESUMEN

INTRODUCTION: Hypercapnic acidosis (HCA) that accompanies lung-protective ventilation may be considered permissive (a tolerable side effect), or it may be therapeutic by itself. Cardiovascular effects may contribute to, or limit, the potential therapeutic impact of HCA; therefore, a complex physiological study was performed in healthy pigs to evaluate the systemic and organ-specific circulatory effects of HCA, and to compare them with those of metabolic (eucapnic) acidosis (MAC). METHODS: In anesthetized, mechanically ventilated and instrumented pigs, HCA was induced by increasing the inspired fraction of CO2 (n = 8) and MAC (n = 8) by the infusion of HCl, to reach an arterial plasma pH of 7.1. In the control group (n = 8), the normal plasma pH was maintained throughout the experiment. Hemodynamic parameters, including regional organ hemodynamics, blood gases, and electrocardiograms, were measured in vivo. Subsequently, isometric contractions and membrane potentials were recorded in vitro in the right ventricular trabeculae. RESULTS: HCA affected both the pulmonary (increase in mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance (PVR)) and systemic (increase in mean arterial pressure (MAP), decrease in systemic vascular resistance (SVR)) circulations. Although the renal perfusion remained unaffected by any type of acidosis, HCA increased carotid, portal, and, hence, total liver blood flow. MAC influenced the pulmonary circulation only (increase in MPAP and PVR). Both MAC and HCA reduced the stroke volume, which was compensated for by an increase in heart rate to maintain (MAC), or even increase (HCA), the cardiac output. The right ventricular stroke work per minute was increased by both MAC and HCA; however, the left ventricular stroke work was increased by HCA only. In vitro, the trabeculae from the control pigs and pigs with acidosis showed similar contraction force and action-potential duration (APD). Perfusion with an acidic solution decreased the contraction force, whereas APD was not influenced. CONCLUSIONS: MAC preferentially affects the pulmonary circulation, whereas HCA affects the pulmonary, systemic, and regional circulations. The cardiac contractile function was reduced, but the cardiac output was maintained (MAC), or even increased (HCA). The increased ventricular stroke work per minute revealed an increased work demand placed by acidosis on the heart.


Asunto(s)
Acidosis Respiratoria/fisiopatología , Hemodinámica , Hipercapnia , Animales , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Electrocardiografía , Femenino , Masculino , Contracción Miocárdica/fisiología , Porcinos , Resistencia Vascular/fisiología
2.
Exp Biol Med (Maywood) ; 237(9): 1056-67, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22929800

RESUMEN

Chronic renal failure (CRF) is associated with an increased incidence of cardiovascular diseases. Intensive research revealed a number of alterations in the heart during CRF; however, possible interventricular differences in CRF-induced cardiac remodeling have so far not been addressed. CRF was induced by two-stage surgical 5/6 nephrectomy (NX) in male Wistar rats. Cellular hypertrophy was quantified using immunohistological morphometric analysis. Contraction force and membrane potential were recorded in left and right ventricle papillary muscles with an isometric force transducer and high-resistance glass microelectrodes. Hypertrophy was present in the left ventricle (LV) of NX animals, but not in the right ventricle (RV) of NX animals, as documented by both ventricle/body weight ratios and cellular morphometric analysis of the cross-sectional area of myocytes. The contraction force was reduced in the LV of NX animals but increased in the RV of NX animals compared with sham-operated rats. Rest potentiation of contraction force was relatively more pronounced in the LV of NX rats. Fifty percent substitution of extracellular sodium with lithium significantly increased the contraction force only in the LV of NX animals. Action potential durations were shortened in both ventricles of CRF animals. Cardiac structural and contractile remodeling in CRF shows significant interventricular differences. CRF induces hypertrophy of the LV but not of the RV. LV hypertrophy was associated with a reduction of contraction force, whereas in the RV, the contraction force was enhanced. Partial recovery of contractile function of the LV by rest potentiation or lithium substitution indicates a role of the Na(+)/Ca(2+) exchanger in this phenomenon.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Ventrículos Cardíacos/fisiopatología , Fallo Renal Crónico/fisiopatología , Remodelación Ventricular , Animales , Enfermedades Cardiovasculares/complicaciones , Hipertensión , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/fisiopatología , Fallo Renal Crónico/complicaciones , Compuestos de Litio/farmacología , Masculino , Potenciales de la Membrana , Contracción Miocárdica , Nefrectomía , Distribución Aleatoria , Ratas , Ratas Wistar , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...