Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38712242

RESUMEN

During metastasis, cancer cells traverse the vasculature by squeezing through very small gaps in the endothelium. Thus, nuclei in metastatic cancer cells must become more malleable to move through these gaps. Our lab showed invasive breast cancer cells have 50% less emerin protein resulting in smaller, misshapen nuclei, and higher metastasis rates than non-cancerous controls. Thus, emerin deficiency was predicted to cause increased nuclear compliance, cell migration, and metastasis. We tested this hypothesis by downregulating emerin in noninvasive MCF7 cells and found emerin knockdown causes smaller, dysmorphic nuclei, resulting in increased impeded cell migration. Emerin reduction in invasive breast cancer cells showed similar results. Supporting the clinical relevance of emerin reduction in cancer progression, our analysis of 192 breast cancer patient samples showed emerin expression inversely correlates with cancer invasiveness. We conclude emerin loss is an important driver of invasive transformation and has utility as a biomarker for tumor progression.

3.
Front Cell Dev Biol ; 10: 1007120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274837

RESUMEN

X-Linked Emery-Dreifuss muscular dystrophy is caused by mutations in the gene encoding emerin. Emerin is an inner nuclear membrane protein important for repressive chromatin organization at the nuclear periphery. Myogenic differentiation is a tightly regulated process characterized by genomic reorganization leading to coordinated temporal expression of key transcription factors, including MyoD, Pax7, and Myf5. Emerin was shown to interact with repressive histone modification machinery, including HDAC3 and EZH2. Using emerin-null myogenic progenitor cells we established several EDMD-causing emerin mutant lines in the effort to understand how the functional interaction of emerin with HDAC3 regulates histone methyltransferase localization or function to organize repressive chromatin at the nuclear periphery. We found that, in addition to its interaction with HDAC3, emerin interacts with the histone methyltransferases EZH2 and G9a in myogenic progenitor cells. Further, we show enhanced binding of emerin HDAC3-binding mutants S54F and Q133H to EZH2 and G9a. Treatment with small molecule inhibitors of EZH2 and G9a reduced H3K9me2 or H3K27me3 throughout differentiation. EZH2 and G9a inhibitors impaired cell cycle withdrawal, differentiation commitment, and myotube formation in wildtype progenitors, while they had no effect on emerin-null progenitors. Interestingly, these inhibitors exacerbated the impaired differentiation of emerin S54F and Q133H mutant progenitors. Collectively, these results suggest the functional interaction between emerin and HDAC3, EZH2, and G9a are important for myogenic differentiation.

4.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681951

RESUMEN

It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mutación , Neoplasias/patología , Proteínas Nucleares/metabolismo , Animales , Humanos , Proteínas de la Membrana/genética , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética
5.
Mol Cancer Res ; 19(7): 1196-1207, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771882

RESUMEN

Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamins are found in many cancers and its expression is correlated with better clinical outcomes. The nucleus is the largest organelle in the cell with a diameter between 10 and 20 µm. Nuclear size significantly impacts cell migration. Nuclear structural changes are predicted to impact cancer metastasis by regulating cancer cell migration. Here we show emerin regulates nuclear structure in invasive breast cancer cells to impact cancer metastasis. Invasive breast cancer cells had 40% to 50% less emerin than control cells, which resulted in decreased nuclear size. Overexpression of GFP-emerin in invasive breast cancer cells rescued nuclear size and inhibited migration through 3.0 and 8.0 µm pores. Mutational analysis showed emerin binding to nucleoskeletal proteins was important for its regulation of nuclear structure, migration, and invasion. Importantly, emerin expression inhibited lung metastasis by 91% in orthotopic mouse models of breast cancer. Emerin nucleoskeleton-binding mutants failed to inhibit metastasis. These results support a model whereby emerin binding to the nucleoskeleton regulates nuclear structure to impact metastasis. In this model, emerin plays a central role in metastatic transformation, because decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. IMPLICATIONS: Modulating emerin expression and function represents new targets for therapeutic interventions of metastasis, because increased emerin expression rescued cancer metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Núcleo Celular/genética , Proteínas de la Membrana/genética , Matriz Nuclear/genética , Proteínas Nucleares/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/genética , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones Desnudos , Microscopía Confocal/métodos , Metástasis de la Neoplasia , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Trasplante Heterólogo
6.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824881

RESUMEN

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Asunto(s)
Distroglicanos/metabolismo , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Animales , Linfocitos B/metabolismo , Sitios de Unión , Línea Celular , Células Cultivadas , Distroglicanos/química , Distroglicanos/genética , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Distrofia Muscular de Emery-Dreifuss/genética , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica
7.
Cells ; 9(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549231

RESUMEN

Mutations in the gene encoding emerin (EMD) cause Emery-Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and D95-99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, D95-99) in an emerin-null (EMD-/y) background. S54F, Q133H, and D95-99 failed to rescue EMD-/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mioblastos/metabolismo , Diferenciación Celular/genética , Humanos , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Membrana Nuclear/metabolismo , Regeneración/genética
8.
Muscle Nerve ; 62(1): 128-136, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32304242

RESUMEN

INTRODUCTION: Emery-Dreifuss muscular dystrophy (EDMD) is a disease characterized by skeletal muscle wasting, major tendon contractures, and cardiac conduction defects. Mutations in the gene encoding emerin cause EDMD1. Our previous studies suggested that emerin activation of histone deacetylase 3 (HDAC3) to reduce histone 4-lysine 5 (H4K5) acetylation (ac) is important for myogenic differentiation. METHODS: Pharmacological inhibitors (Nu9056, L002) of histone acetyltransferases targeting acetylated H4K5 were used to test whether increased acetylated H4K5 was responsible for the impaired differentiation seen in emerin-deficient myogenic progenitors. RESULTS: Nu9056 and L002 rescued impaired differentiation in emerin deficiency. SRT1720, which inhibits the nicotinamide adenine dinucleotide (NAD)+ -dependent deacetylase sirtuin 1 (SIRT1), failed to rescue myotube formation. DISCUSSION: We conclude that emerin regulation of HDAC3 activity to affect H4K5 acetylation dynamics is important for myogenic differentiation. Targeting H4K5ac dynamics represents a potential new strategy for ameliorating the skeletal muscle wasting seen in EDMD1.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Histona Acetiltransferasas/antagonistas & inhibidores , Distrofia Muscular de Emery-Dreifuss/tratamiento farmacológico , Distrofia Muscular de Emery-Dreifuss/patología , Células Madre/efectos de los fármacos , Tiazoles/uso terapéutico , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Histona Acetiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre/patología , Tiazoles/farmacología
9.
Cells ; 6(4)2017 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-29065506

RESUMEN

Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD), a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

10.
Dis Model Mech ; 10(4): 385-397, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28188262

RESUMEN

Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos , Proteínas Nucleares/metabolismo , Células Madre/metabolismo , Acetilación , Animales , Butadienos/farmacología , Diferenciación Celular/efectos de los fármacos , Flavonoides/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Células Madre/efectos de los fármacos , Teofilina/farmacología
11.
Compr Physiol ; 6(4): 1655-1674, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27783855

RESUMEN

The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.


Asunto(s)
Matriz Nuclear , Animales , Humanos , Mutación , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo
12.
Muscle Nerve ; 51(2): 222-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24825363

RESUMEN

INTRODUCTION: Mutations in the inner nuclear envelope protein emerin cause Emery-Dreifuss muscular dystrophy (EDMD), which is characterized by progressive skeletal muscle wasting, cardiac conduction defects, and tendon contractures. We previously showed that emerin binds directly to the transcription regulator Lmo7 and attenuates its activity to regulate the proper temporal expression of important myogenic differentiation genes. METHODS: The skeletal muscle and cardiac phenotypes were analyzed in a newly generated Lmo7-null mouse using histological analysis, echocardiography, and various neuromuscular tests to determine if Lmo7 was important for skeletal muscle and cardiac function. RESULTS: Lmo7-null mice had growth retardation, decreased fiber size, and impaired skeletal muscle and cardiac function. Lmo7-null mice also had lower levels of phosphorylated retinoblastoma (Rb), extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which is consistent with altered Rb and mitogen-activated protein kinase signaling. CONCLUSIONS: These findings demonstrate that loss of Lmo7 in mice causes myopathic phenotypes similar to those seen in other EDMD mouse models.


Asunto(s)
Proteínas con Dominio LIM/deficiencia , Músculo Esquelético/fisiopatología , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Factores de Transcripción/deficiencia , Animales , Índice de Masa Corporal , Peso Corporal/genética , Modelos Animales de Enfermedad , Ecocardiografía , Regulación de la Expresión Génica/genética , Cardiopatías/genética , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Enfermedades de la Unión Neuromuscular/etiología , Enfermedades de la Unión Neuromuscular/genética , Fenotipo , Transducción de Señal/genética , Factores de Transcripción/genética
13.
Semin Cell Dev Biol ; 29: 95-106, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24365856

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Distrofia Muscular de Emery-Dreifuss/genética , Lámina Nuclear/genética , Proteínas Nucleares/genética , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Musculares/genética , Mutación , Lámina Nuclear/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , beta Catenina/metabolismo
14.
Chromosome Res ; 21(8): 765-79, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24062260

RESUMEN

The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes.


Asunto(s)
Histona Desacetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX7/metabolismo , Animales , Diferenciación Celular , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Histona Desacetilasas/genética , Proteínas de la Membrana/genética , Ratones , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Proteínas Nucleares/genética , Factor de Transcripción PAX7/genética , Activación Transcripcional
15.
PLoS One ; 7(5): e37262, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606356

RESUMEN

Emerin is an integral membrane protein of the inner nuclear membrane. Mutations in emerin cause X-linked Emery-Dreifuss muscular dystrophy (EDMD), a disease characterized by skeletal muscle wasting and dilated cardiomyopathy. Current evidence suggests the muscle wasting phenotype of EDMD is caused by defective myogenic progenitor cell differentiation and impaired muscle regeneration. We obtained genome-wide expression data for both mRNA and micro-RNA (miRNA) in wildtype and emerin-null mouse myogenic progenitor cells. We report here that emerin-null myogenic progenitors exhibit differential expression of multiple signaling pathway components required for normal muscle development and regeneration. Components of the Wnt, IGF-1, TGF-ß, and Notch signaling pathways are misexpressed in emerin-null myogenic progenitors at both the mRNA and protein levels. We also report significant perturbations in the expression and activation of p38/Mapk14 in emerin-null myogenic progenitors, showing that perturbed expression of Wnt, IGF-1, TGF-ß, and Notch signaling components disrupts normal downstream myogenic signaling in these cells. Collectively, these data support the hypothesis that emerin is essential for proper myogenic signaling in myogenic progenitors, which is necessary for myogenic differentiation and muscle regeneration.


Asunto(s)
Proteínas de la Membrana/deficiencia , MicroARNs/genética , Desarrollo de Músculos/fisiología , Mioblastos Esqueléticos/metabolismo , Proteínas Nucleares/deficiencia , Animales , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Morfolinas , Desarrollo de Músculos/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología , Mioblastos Esqueléticos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal
16.
J Biol Chem ; 287(26): 22080-8, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22570481

RESUMEN

Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.


Asunto(s)
Histona Desacetilasas/química , Proteínas de la Membrana/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Animales , Catálisis , Núcleo Celular/metabolismo , Cromatina/metabolismo , Activación Enzimática , Epigénesis Genética , Genoma , Histonas/química , Cinética , Ratones , Microscopía Confocal/métodos , Distrofias Musculares/metabolismo , Unión Proteica , Fracciones Subcelulares/metabolismo
17.
J Cell Sci ; 124(Pt 10): 1691-702, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21525034

RESUMEN

X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP-Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.


Asunto(s)
Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteína MioD/genética , Mioblastos/fisiología , Proteínas Nucleares/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción/antagonistas & inhibidores , Animales , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/metabolismo , Proteínas con Dominio LIM , Proteínas de la Membrana/metabolismo , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX3 , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
18.
Hum Mol Genet ; 18(4): 607-20, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19008300

RESUMEN

Mutations in the gene encoding the inner nuclear membrane proteins lamins A and C produce cardiac and skeletal muscle dysfunction referred to as Emery Dreifuss muscular dystrophy. Lamins A and C participate in the LINC complex that, along with the nesprin and SUN proteins, LInk the Nucleoskeleton with the Cytoskeleton. Nesprins 1 and 2 are giant spectrin-repeat containing proteins that have large and small forms. The nesprins contain a transmembrane anchor that tethers to the nuclear membrane followed by a short domain that resides within the lumen between the inner and outer nuclear membrane. Nesprin's luminal domain binds directly to SUN proteins. We generated mice where the C-terminus of nesprin-1 was deleted. This strategy produced a protein lacking the transmembrane and luminal domains that together are referred to as the KASH domain. Mice homozygous for this mutation exhibit lethality with approximately half dying at or near birth from respiratory failure. Surviving mice display hindlimb weakness and an abnormal gait. With increasing age, kyphoscoliosis, muscle pathology and cardiac conduction defects develop. The protein components of the LINC complex, including mutant nesprin-1alpha, lamin A/C and SUN2, are localized at the nuclear membrane in this model. However, the LINC components do not normally associate since coimmunoprecipitation experiments with SUN2 and nesprin reveal that mutant nesprin-1 protein no longer interacts with SUN2. These findings demonstrate the role of the LINC complex, and nesprin-1, in neuromuscular and cardiac disease.


Asunto(s)
Silenciador del Gen , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Femenino , Humanos , Laminas/genética , Laminas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Emery-Dreifuss/embriología , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína
19.
Circ Res ; 103(1): 16-23, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18596264

RESUMEN

The human genome is contained within the nucleus and is separated from the cytoplasm by the nuclear envelope. Mutations in the nuclear envelope proteins emerin and lamin A cause a number of diseases including premature aging syndromes, muscular dystrophy, and cardiomyopathy. Emerin and lamin A are implicated in regulating muscle- and heart-specific gene expression and nuclear architecture. For example, lamin A regulates the expression and localization of gap junction and intercalated disc components. Additionally, emerin and lamin A are also required to maintain nuclear envelope integrity. Demonstrating the importance of maintaining nuclear integrity in heart disease, atrioventricular node cells lacking lamin A exhibit increased nuclear deformation and apoptosis. This review highlights the present understanding of lamin A and emerin function in regulating nuclear architecture, gene expression, and cell signaling and discusses putative mechanisms for how specific mutations in lamin A and emerin cause cardiac- or muscle-specific disease.


Asunto(s)
Cardiomiopatías/metabolismo , Genoma Humano , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Animales , Apoptosis/genética , Nodo Atrioventricular/metabolismo , Nodo Atrioventricular/patología , Cardiomiopatías/genética , Cardiomiopatías/patología , Regulación de la Expresión Génica/genética , Humanos , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Miocardio/patología , Lámina Nuclear/genética , Lámina Nuclear/patología , Proteínas Nucleares/genética , Especificidad de Órganos/genética , Transducción de Señal/genética , Síndrome
20.
Biochemistry ; 46(30): 8897-908, 2007 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-17620012

RESUMEN

Using recombinant bead-conjugated emerin, we affinity-purified seven proteins from HeLa cell nuclear lysates that bind emerin either directly or indirectly. These proteins were identified by mass spectrometry as nuclear alphaII-spectrin, nonmuscle myosin heavy chain alpha, Lmo7 (a predicted transcription regulator; reported separately), nuclear myosin I, beta-actin (reported separately), calponin 3, and SIKE. We now report that emerin binds nuclear myosin I (NMI, a molecular motor) directly in vitro. Furthermore, bead-conjugated emerin bound nuclear alphaII-spectrin and NMI equally well with or without ATP (which stimulates motor activity), whereas ATP decreased actin binding by 65%. Thus alphaII-spectrin and NMI interact stably with emerin. To investigate the physiological relevance of these interactions, we used antibodies against emerin to affinity-purify emerin-associated protein complexes from HeLa cells and then further purified by ion-exchange chromatography to resolve by net charge and by size exclusion chromatography yielding six distinct emerin-containing fractions (0.5-1.6 MDa). Western blotting suggested that each complex had distinct components involved in nuclear architecture (e.g., NMI, alphaII-spectrin, lamins) or gene or chromatin regulation (BAF, transcription regulators, HDACs). Additional constituents were identified by mass spectrometry. One putative gene-regulatory complex (complex 32) included core components of the nuclear corepressor (NCoR) complex, which mediates gene regulation by thyroid hormone and other nuclear receptors. When expressed in HeLa cells, FLAG-tagged NCoR subunits Gps2, HDAC3, TBLR1, and NCoR each co-immunoprecipitated emerin, validating one putative complex. These findings support the hypothesis that emerin scaffolds a variety of functionally distinct multiprotein complexes at the nuclear envelope in vivo. Notably included are nuclear myosin I-containing complexes that might sense and regulate mechanical tension at the nuclear envelope.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/fisiología , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión/fisiología , Línea Celular Tumoral , Cromatina/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Células HeLa , Humanos , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas Asociadas a Matriz Nuclear , Proteínas Nucleares/química , Proteínas Nucleares/aislamiento & purificación , Unión Proteica/fisiología , Biosíntesis de Proteínas , Proteoma/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...