Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 279(1736): 2116-21, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22279163

RESUMEN

While chance events, oceanography and selective pressures inject stochasticity into the replenishment of marine populations with dispersing life stages, some determinism may arise as a result of characteristics of breeding individuals. It is well known that larger females have higher fecundity, and recent laboratory studies have shown that maternal traits such as age and size can be positively associated with offspring growth, size and survival. Whether such fecundity and maternal effects translate into higher recruitment in marine populations remains largely unanswered. We studied a population of Amphiprion chrysopterus (orange-fin anemonefish) in Moorea, French Polynesia, to test whether maternal size influenced the degree of self-recruitment on the island through body size-fecundity and/or additional size-related maternal effects of offspring. We non-lethally sampled 378 adult and young juveniles at Moorea, and, through parentage analysis, identified the mothers of 27 self-recruits (SRs) out of 101 recruits sampled. We also identified the sites occupied by each mother of an SR and, taking into account variation in maternal size among sites, we found that females that produced SRs were significantly larger than those that did not (approx. 7% greater total length, approx. 20% greater biomass). Our analyses further reveal that the contribution of larger females to self-recruitment was significantly greater than expected on the basis of the relationship between body size and fecundity, indicating that there were important maternal effects of female size on traits of their offspring. These results show, for the first time in a natural population, that larger female fish contribute more to local replenishment (self-recruitment) and, more importantly, that size-specific fecundity alone could not explain the disparity.


Asunto(s)
Tamaño Corporal , Fertilidad , Perciformes/fisiología , Factores de Edad , Animales , Arrecifes de Coral , Femenino , Masculino , Polinesia , Densidad de Población
2.
J Exp Biol ; 213(6): 894-900, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20190114

RESUMEN

Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Peces/fisiología , Agua de Mar , Animales , Conducta Animal/fisiología , Biodiversidad , Ecosistema , Enfermedades de los Peces , Humanos , Dinámica Poblacional , Encuestas y Cuestionarios
3.
Oecologia ; 122(1): 109-120, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28307947

RESUMEN

For species with metapopulation structures, variation in abundance among patches can arise from variation in the input rate of colonists. For reef fishes, variability in larval supply frequently is invoked as a major determinant of spatial patterns. We examined the extent to which spatial variation in the amount of suitable habitat predicted variation in the abundance of the damselfish Dascyllus aruanus, an abundant planktivore that occupies live, branched coral throughout the Indo-Pacific. Reef surveys established that size, branching structure and location (proximity to sand) of the coral colonies together determined the "suitability" of microhabitats for different ontogenetic stages of D. aruanus. Once these criteria were known, patterns of habitat use were quantified within lagoons of five Pacific islands. Availability of suitable habitat generally was an excellent predictor of density, and patterns were qualitatively consistent at several spatial scales, including among different lagoons on the same island, among different islands and between the central (French Polynesia and Rarotonga) and western (Great Barrier Reef, Australia) South Pacific. A field experiment that varied the amount of suitable coral among local plots indicated that habitat for settlers accounted for almost all of the spatial variation in the number of D. aruanus that settled at that location, suggesting that spatial patterns of abundance can be established at settlement without spatial variation in larval supply. Surveys of four other species of reef-associated fish revealed that a substantial fraction of their spatial variation in density also was explained by availability of suitable reef habitat, suggesting that habitat may be a prevalent determinant of spatial patterns. The results underscore the critical need to identify accurately the resource requirements of different species and life stages when evaluating causes of spatial variation in abundance of reef fishes.

4.
Ecol Lett ; 2(5): 294-303, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33810636

RESUMEN

A challenge for species with demographically open populations is to evaluate the relative importance of various processes that together set local abundance. We developed a cohort-based framework for quantifying the influence of an external supply of colonists and subsequent density-independent and density-dependent mortality on local abundance. Two complementary approaches - based on limitation and elasticity - revealed the nature of interactions and nonlinearities among these processes. Data for an Indo-Pacific reef fish were used to document the settler-survivor relationship and to quantify natural variation in settlement. Limitation by density-dependence was two-fold and 20-fold greater than by supply or density-independent mortality, respectively. Elasticity analyses showed that adult abundance was 40% more sensitive to small proportionate changes in supply than in density-dependence. These techniques provide a way to compare across systems, which could enhance our ability to draw general conclusions regarding the processes that shape local abundance of species with open populations.

5.
Oecologia ; 118(1): 76-86, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20135163

RESUMEN

Spatial patterns of settlement and abundance of older life stages were examined for three species of damselfish in the genus Dascyllus by monitoring natural colonization of standard amounts of initially empty juvenile microhabitat (anemones for D. trimaculatus; branching coral for D. flavicaudus and D. aruanus) transplanted to a series of sites within lagoons of Moorea, French Polynesia. Large spatial differences in larval colonization were observed, which were temporally consistent but different among the species. At the whole-island scale, D. trimaculatus settled primarily on the northern shore, while settlement of the other two species was greatest at the southern end. The three species also showed different patterns of settlement within lagoons: D. aruanus settled mainly nearer to shore, D. flavicaudus primarily on offshore lagoon portions and D. trimaculatus colonized equally across the lagoons. Among sites around the island, the relative abundance of older juveniles after 10 months was a curvilinear function of the relative abundance of settlers for two species (D. trimaculatus and D. flavicaudus). There was no relationship between patterns of settlement and abundance of older juveniles for D. aruanus, although juvenile abundance was inversely related to that of juvenile D. flavicaudus. At the within-lagoon scale, settlement mirrored almost exactly the relative abundance of older lifestages of D. trimaculatus and D. flavicaudus, whereas there was just a qualitative match for D. aruanus. A competition experiment revealed that juvenile D. flavicaudus had a greater effect on population growth of D. aruanus than vice versa, and this mechanism helped explain why the modification of settlement patterns was greatest in D. aruanus. Interspecific variation in abundance of older stages was shaped to differing extents by both patterns of larval delivery and subsequent density-dependent processes involving competition for shelter space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...