Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Biochem Soc Trans ; 52(2): 593-602, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563493

RESUMEN

Malaria, a vector borne disease, is a major global health and socioeconomic problem caused by the apicomplexan protozoan parasite Plasmodium. The parasite alternates between mosquito vector and vertebrate host, with meiosis in the mosquito and proliferative mitotic cell division in both hosts. In the canonical eukaryotic model, cell division is either by open or closed mitosis and karyokinesis is followed by cytokinesis; whereas in Plasmodium closed mitosis is not directly accompanied by concomitant cell division. Key molecular players and regulatory mechanisms of this process have been identified, but the pivotal role of certain protein complexes and the post-translational modifications that modulate their actions are still to be deciphered. Here, we discuss recent evidence for the function of known proteins in Plasmodium cell division and processes that are potential novel targets for therapeutic intervention. We also identify key questions to open new and exciting research to understand divergent Plasmodium cell division.


Asunto(s)
División Celular , Malaria , Plasmodium , Proteínas Protozoarias , Plasmodium/metabolismo , Plasmodium/fisiología , Animales , Humanos , Malaria/parasitología , Malaria/metabolismo , Proteínas Protozoarias/metabolismo , Mitosis , Citocinesis , Meiosis , Procesamiento Proteico-Postraduccional , Interacciones Huésped-Parásitos
2.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884813

RESUMEN

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Malaria/parasitología , Regulación de la Expresión Génica , Plasmodium falciparum/genética
3.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704606

RESUMEN

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Asunto(s)
División del Núcleo Celular , Segregación Cromosómica , Animales , Plasmodium berghei/genética , Proliferación Celular , Meiosis , Aurora Quinasas , Eucariontes
4.
Trends Parasitol ; 39(10): 812-821, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541799

RESUMEN

Meiosis is sexual cell division, a process in eukaryotes whereby haploid gametes are produced. Compared to canonical model eukaryotes, meiosis in apicomplexan parasites appears to diverge from the process with respect to the molecular mechanisms involved; the biology of Plasmodium meiosis, and its regulation by means of post-translational modification, are largely unexplored. Here, we discuss the impact of technological advances in cell biology, evolutionary bioinformatics, and genome-wide functional studies on our understanding of meiosis in the Apicomplexa. These parasites, including Plasmodium falciparum, Toxoplasma gondii, and Eimeria spp., have significant socioeconomic impact on human and animal health. Understanding this key stage during the parasite's life cycle may well reveal attractive targets for therapeutic intervention.


Asunto(s)
Plasmodium , Toxoplasma , Animales , Humanos , Eucariontes , Plasmodium falciparum/genética , Meiosis
5.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293082

RESUMEN

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

6.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778504

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

7.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798191

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

8.
Malar J ; 21(1): 302, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303209

RESUMEN

BACKGROUND: The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. METHODS: The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0-3 h ring survival assay (RSA0-3 h) was investigated. RESULTS AND CONCLUSION: Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0-3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds.


Asunto(s)
Antimaláricos , Apicoplastos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/parasitología , Apicoplastos/metabolismo , Estudio de Asociación del Genoma Completo , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mutación
9.
PLoS Biol ; 20(7): e3001704, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35900985

RESUMEN

Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.


Asunto(s)
Culicidae , Malaria , Parásitos , Plasmodium , Animales , Humanos , Cinesinas/genética , Estadios del Ciclo de Vida/genética , Malaria/metabolismo , Mamíferos , Microtúbulos/metabolismo , Plasmodium/genética
10.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550346

RESUMEN

The centriole/basal body (CBB) is an evolutionarily conserved organelle acting as a microtubule organising centre (MTOC) to nucleate cilia, flagella, and the centrosome. SAS4/CPAP is a conserved component associated with BB biogenesis in many model flagellated cells. Plasmodium, a divergent unicellular eukaryote and causative agent of malaria, displays an atypical, closed mitosis with an MTOC (or centriolar plaque), reminiscent of an acentriolar MTOC, embedded in the nuclear membrane. Mitosis during male gamete formation is accompanied by flagella formation. There are two MTOCs in male gametocytes: the acentriolar nuclear envelope MTOC for the mitotic spindle and an outer centriolar MTOC (the basal body) that organises flagella assembly in the cytoplasm. We show the coordinated location, association and assembly of SAS4 with the BB component, kinesin-8B, but no association with the kinetochore protein, NDC80, indicating that SAS4 is part of the BB and outer centriolar MTOC in the cytoplasm. Deletion of the SAS4 gene produced no phenotype, indicating that it is not essential for either male gamete formation or parasite transmission.


Asunto(s)
Parásitos , Plasmodium , Animales , Cuerpos Basales/metabolismo , Centriolos/metabolismo , Masculino , Centro Organizador de los Microtúbulos/metabolismo
11.
Annu Rev Microbiol ; 76: 113-134, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609946

RESUMEN

The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.


Asunto(s)
Anopheles , Malaria , Parásitos , Animales , Anopheles/parasitología , Femenino , Malaria/parasitología , Mosquitos Vectores , Plasmodium berghei/genética
12.
Sci Rep ; 11(1): 21791, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750454

RESUMEN

The inducible Di-Cre system was used to delete the putative ubiquitin-conjugating enzyme 13 gene (ubc13) of Plasmodium falciparum to study its role in ubiquitylation and the functional consequence during the parasite asexual blood stage. Deletion resulted in a significant reduction of parasite growth in vitro, reduced ubiquitylation of the Lys63 residue of ubiquitin attached to protein substrates, and an increased sensitivity of the parasite to both the mutagen, methyl methanesulfonate and the antimalarial drug dihydroartemisinin (DHA), but not chloroquine. The parasite was also sensitive to the UBC13 inhibitor NSC697923. The data suggest that this gene does code for an ubiquitin conjugating enzyme responsible for K63 ubiquitylation, which is important in DNA repair pathways as was previously demonstrated in other organisms. The increased parasite sensitivity to DHA in the absence of ubc13 function indicates that DHA may act primarily through this pathway and that inhibitors of UBC13 may both enhance the efficacy of this antimalarial drug and directly inhibit parasite growth.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Enzimas Ubiquitina-Conjugadoras/genética , Daño del ADN/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Nitrofuranos/farmacología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Estructura Terciaria de Proteína , Alineación de Secuencia , Sulfonas/farmacología
13.
PLoS Biol ; 19(10): e3001408, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695132

RESUMEN

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Asunto(s)
Eritrocitos/parasitología , Ácido Mirístico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Eritrocitos/efectos de los fármacos , Lipoilación/efectos de los fármacos , Merozoítos/efectos de los fármacos , Merozoítos/metabolismo , Parásitos/efectos de los fármacos , Parásitos/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/ultraestructura , Solubilidad , Especificidad por Sustrato/efectos de los fármacos
14.
Sci Rep ; 11(1): 19183, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584166

RESUMEN

Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.


Asunto(s)
Antígenos de Protozoos/metabolismo , Antígenos de Superficie/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Humanos , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Merozoítos/genética , Merozoítos/inmunología , Merozoítos/metabolismo , Ratones , Plasmodium falciparum/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Conejos , Desarrollo de Vacunas
15.
Commun Biol ; 4(1): 760, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145386

RESUMEN

PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.


Asunto(s)
Estadios del Ciclo de Vida/genética , Meiosis/genética , Mitosis/genética , Plasmodium/crecimiento & desarrollo , Proteína Fosfatasa 1/genética , Proteínas Protozoarias/genética , Proliferación Celular/genética , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/parasitología , Plasmodium/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Protozoarias/metabolismo
16.
Front Microbiol ; 12: 684005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108954

RESUMEN

We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.

17.
Cells ; 9(12)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287434

RESUMEN

The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic analysis of Plasmodium parasites lacking MRE11 during its life cycle in both mammalian and mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation of genes involved in key interconnected biological processes that are fundamental to all eukaryotic life including ribonucleoprotein biogenesis, spliceosome function and iron-sulfur cluster assembly. Overall, our study provides a comprehensive functional analysis of MRE11's role in Plasmodium development during the mosquito stages and offers a potential target for therapeutic intervention during malaria parasite transmission.


Asunto(s)
Proteína Homóloga de MRE11/genética , Malaria/transmisión , Plasmodium berghei/genética , Animales , Culicidae/genética , Regulación hacia Abajo/genética , Femenino , Ratones , Mosquitos Vectores/genética , Oocistos/genética , Proteínas Protozoarias/genética , Transcripción Genética/genética
18.
Front Cell Infect Microbiol ; 10: 583812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154955

RESUMEN

Kinesin-5 motors play essential roles in spindle apparatus assembly during cell division, by generating forces to establish and maintain the spindle bipolarity essential for proper chromosome segregation. Kinesin-5 is largely conserved structurally and functionally in model eukaryotes, but its role is unknown in the Plasmodium parasite, an evolutionarily divergent organism with several atypical features of both mitotic and meiotic cell division. We have investigated the function and subcellular location of kinesin-5 during cell division throughout the Plasmodium berghei life cycle. Deletion of kinesin-5 had little visible effect at any proliferative stage except sporozoite production in oocysts, resulting in a significant decrease in the number of motile sporozoites in mosquito salivary glands, which were able to infect a new vertebrate host. Live-cell imaging showed kinesin-5-GFP located on the spindle and at spindle poles during both atypical mitosis and meiosis. Fixed-cell immunofluorescence assays revealed kinesin-5 co-localized with α-tubulin and centrin-2 and a partial overlap with kinetochore marker NDC80 during early blood stage schizogony. Dual-color live-cell imaging showed that kinesin-5 is closely associated with NDC80 during male gametogony, but not with kinesin-8B, a marker of the basal body and axonemes of the forming flagella. Treatment of gametocytes with microtubule-specific inhibitors confirmed kinesin-5 association with nuclear spindles and not cytoplasmic axonemal microtubules. Altogether, our results demonstrate that kinesin-5 is associated with the spindle apparatus, expressed in proliferating parasite stages, and important for efficient production of infectious sporozoites.


Asunto(s)
Cinesinas , Esporozoítos , Animales , Segregación Cromosómica , Cinesinas/genética , Masculino , Microtúbulos , Plasmodium berghei , Huso Acromático
19.
Life Sci Alliance ; 3(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106323

RESUMEN

Cells use fatty acids (FAs) for membrane biosynthesis, energy storage, and the generation of signaling molecules. 3-hydroxyacyl-CoA dehydratase-DEH-is a key component of very long chain fatty acid synthesis. Here, we further characterized in-depth the location and function of DEH, applying in silico analysis, live cell imaging, reverse genetics, and ultrastructure analysis using the mouse malaria model Plasmodium berghei DEH is evolutionarily conserved across eukaryotes, with a single DEH in Plasmodium spp. and up to three orthologs in the other eukaryotes studied. DEH-GFP live-cell imaging showed strong GFP fluorescence throughout the life-cycle, with areas of localized expression in the cytoplasm and a circular ring pattern around the nucleus that colocalized with ER markers. Δdeh mutants showed a small but significant reduction in oocyst size compared with WT controls from day 10 postinfection onwards, and endomitotic cell division and sporogony were completely ablated, blocking parasite transmission from mosquito to vertebrate host. Ultrastructure analysis confirmed degeneration of Δdeh oocysts, and a complete lack of sporozoite budding. Overall, DEH is evolutionarily conserved, localizes to the ER, and plays a crucial role in sporogony.


Asunto(s)
Enoil-CoA Hidratasa/metabolismo , Ácidos Grasos/biosíntesis , Mitosis/fisiología , Plasmodium berghei/metabolismo , Animales , Anopheles , División Celular , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico , Femenino , Estadios del Ciclo de Vida , Malaria/metabolismo , Malaria/transmisión , Ratones , Oocistos/metabolismo , Oocistos/ultraestructura , Plasmodium berghei/patogenicidad , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
20.
J Cell Sci ; 134(5)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32501284

RESUMEN

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Asunto(s)
Parásitos , Plasmodium , Animales , División Celular , Segregación Cromosómica/genética , Cinetocoros , Microtúbulos , Mitosis/genética , Plasmodium/genética , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA