Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 33(4): 108318, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33113373

RESUMEN

Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.


Asunto(s)
Proteínas Nucleares/metabolismo , Polifosfatos/metabolismo , Humanos
2.
Cell Rep ; 22(13): 3427-3439, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590613

RESUMEN

Polyphosphates (polyP) are chains of inorganic phosphates found in all cells. Previous work has implicated these chains in diverse functions, but the mechanism of action is unclear. A recent study reports that polyP can be non-enzymatically and covalently attached to lysine residues on yeast proteins Nsr1 and Top1. One question emerging from this work is whether so-called "polyphosphorylation" is unique to these proteins or instead functions as a global regulator akin to other lysine post-translational modifications. Here, we present the results of a screen for polyphosphorylated proteins in yeast. We uncovered 15 targets including a conserved network of proteins functioning in ribosome biogenesis. Multiple genes contribute to polyphosphorylation of targets by regulating polyP synthesis, and disruption of this synthesis results in translation defects as measured by polysome profiling. Finally, we identify 6 human proteins that can be modified by polyP, highlighting the therapeutic potential of manipulating polyphosphorylation in vivo.


Asunto(s)
Lisina/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Biogénesis de Organelos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA