Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(30): eabo2405, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895816

RESUMEN

The mechanisms underlying decadal variability in Arctic sea ice remain actively debated. Here, we show that variability in boreal biomass burning (BB) emissions strongly influences simulated Arctic sea ice on multidecadal time scales. In particular, we find that a strong acceleration in sea ice decline in the early 21st century in the Community Earth System Model version 2 (CESM2) is related to increased variability in prescribed BB emissions in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) through summertime aerosol-cloud interactions. Furthermore, we find that more than half of the reported improvement in sea ice sensitivity to CO2 emissions and global warming from CMIP5 to CMIP6 can be attributed to the increased BB variability, at least in the CESM. These results highlight a new kind of uncertainty that needs to be considered when incorporating new observational data into model forcing while also raising questions about the role of BB emissions on the observed Arctic sea ice loss.

2.
Nat Commun ; 10(1): 14, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30600315

RESUMEN

After nearly three decades of observed increasing trends of Antarctic sea ice extent, in September-October-November 2016, there was a dramatic decrease. Here we document factors that contributed to that decrease. An atmosphere-only model with a specified positive convective heating anomaly in the eastern Indian/western Pacific Ocean, representing the record positive precipitation anomalies there in September-October-November 2016, produces an anomalous atmospheric Rossby wave response with mid- and high latitude surface wind anomalies that contribute to the decrease of Antarctic sea ice extent. The sustained decreases of Antarctic sea ice extent after late 2016 are associated with a warmer upper Southern Ocean. This is the culmination of a negative decadal trend of wind stress curl with positive Southern Annular Mode and negative Interdecadal Pacific Oscillation, Ekman suction that results in warmer water being moved upward in the column closer to the surface, a transition to positive Interdecadal Pacific Oscillation around 2014-2016, and negative Southern Annular Mode in late 2016.

3.
Nat Commun ; 8(1): 832, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018199

RESUMEN

Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.


Asunto(s)
Modelos Teóricos , Spheniscidae , Animales , Regiones Antárticas , Teorema de Bayes , Humanos , Dinámica Poblacional , Grupos de Población , Procesos Estocásticos
4.
Nat Commun ; 8(1): 731, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959021

RESUMEN

Autumn sea ice trends in the western Ross Sea dominate increases in Antarctic sea ice and are outside the range simulated by climate models. Here we use a number of independent data sets to show that variability in western Ross Sea autumn ice conditions is largely driven by springtime zonal winds in the high latitude South Pacific, with a lead-time of 5 months. Enhanced zonal winds dynamically thin the ice, allowing an earlier melt out, enhanced solar absorption, and reduced ice cover the next autumn. This seasonal lag relationship has implications for sea ice prediction. Given a weakening trend in springtime zonal winds, this lagged relationship can also explain an important fraction of the observed sea ice increase. An analysis of climate models indicates that they simulate weaker relationships and wind trends than observed. This contributes to weak western Ross Sea ice trends in climate model simulations.Antarctic sea ice extent continues to increase, with autumn sea ice advances in the western Ross Sea particularly anomalous. Here, based on analysis of independent datasets, the authors show that springtime zonal winds in the high latitude South Pacific drive western Ross Sea autumn sea ice conditions.

5.
Philos Trans A Math Phys Eng Sci ; 373(2045)2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26032318

RESUMEN

We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state.

6.
Science ; 315(5818): 1533-6, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17363664

RESUMEN

Linear trends in arctic sea-ice extent over the period 1979 to 2006 are negative in every month. This ice loss is best viewed as a combination of strong natural variability in the coupled ice-ocean-atmosphere system and a growing radiative forcing associated with rising concentrations of atmospheric greenhouse gases, the latter supported by evidence of qualitative consistency between observed trends and those simulated by climate models over the same period. Although the large scatter between individual model simulations leads to much uncertainty as to when a seasonally ice-free Arctic Ocean might be realized, this transition to a new arctic state may be rapid once the ice thins to a more vulnerable state. Loss of the ice cover is expected to affect the Arctic's freshwater system and surface energy budget and could be manifested in middle latitudes as altered patterns of atmospheric circulation and precipitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...