RESUMEN
We present a genome assembly from an individual female Orthosia gothica (the Hebrew character; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 1,065.1 megabases in span. Most of the assembly is scaffolded into 37 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,691 protein coding genes.
RESUMEN
Biodiversity genomics research requires reliable organismal identification, which can be difficult based on morphology alone. DNA-based identification using DNA barcoding can provide confirmation of species identity and resolve taxonomic issues but is rarely used in studies generating reference genomes. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We present a standardised framework for DNA barcode sequencing and data interpretation that is then adapted for diverse organismal groups. DNA barcoding data from over 12,000 DToL specimens has identified up to 20% of samples requiring additional verification, with 2% of seed plants and 3.5% of animal specimens subsequently having their names changed. We also make recommendations for future developments using new sequencing approaches and streamlined bioinformatic approaches.
Identifying species based solely on their morphology can be difficult. DNA-based identification using DNA barcoding can aid species identification, but can be challenging to implement in biodiversity projects sampling diverse organismal groups. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We discuss how a standardised approach has been adapted by each partner to suit different organismal groups, show the efficacy of this approach for confirming species identities and resolving taxonomic issues, and make recommendations for future developments.
RESUMEN
We present a genome assembly from an individual male Agonopterix heracliana (the Common Flat-body; Arthropoda; Insecta; Lepidoptera; Depressariidae). The genome sequence is 539.1 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.36 kilobases in length.
RESUMEN
We present a genome assembly from an adult female Cotton Bollworm moth, Helicoverpa armigera (Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence has a total length of 362.20 megabases. Most of the assembly is scaffolded into 32 chromosomal pseudomolecules, including the W and Z sex chromosomes. The mitochondrial genome has also been assembled and is 15.36 kilobases in length.
RESUMEN
We present a genome assembly from an individual male Callimorpha dominula (the Scarlet Tiger moth; Arthropoda; Insecta; Lepidoptera; Erebidae). The genome sequence is 658.1 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.45 kilobases in length. Gene annotation of this assembly on Ensembl identified 20,234 protein coding genes.
RESUMEN
We present a genome assembly from an individual male Nycteola revayana (the Oak Nycteoline moth; Arthropoda; Insecta; Lepidoptera; Nolidae). The genome sequence is 621.0 megabases in span. Most of the assembly is scaffolded into 26 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.25 kilobases in length. Gene annotation of this assembly on Ensembl identified 19,235 protein-coding genes.
RESUMEN
We present a genome assembly from an individual female Pseudoips prasinana (the Green Silver-lines; Arthropoda; Insecta; Lepidoptera; Nolidae). The genome sequence is 1,125.7 megabases in span. Most of the assembly is scaffolded into 33 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.23 kilobases in length. Gene annotation of this assembly on Ensembl identified 20,065 protein coding genes.
RESUMEN
We present a genome assembly from an individual female Deilephila elpenor (the Elephant Hawk-moth; Arthropoda; Insecta; Lepidoptera; Sphingidae). The genome sequence is 414.1 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.37 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,748 protein coding genes.
RESUMEN
Csikszentmihalyi's concept of the "flow state" was initially discovered in experts deeply engaged in self-rewarding activities. However, recent neurophysiology research often measures flow in constrained and unfamiliar activities. In this perspective article, we address the challenging yet necessary considerations for studying flow state's neurophysiology. We aggregate an activity-autonomy framework with several testable hypotheses to induce flow, expanding the traditional "challenge skill balance" paradigm. Further, we review and synthesise the best methodological practices from neurophysiological flow studies into a practical 24-item checklist. This checklist offers detailed guidelines for ensuring consistent reporting, personalising and testing isolated challenge types, factoring in participant skills, motivation, and individual differences, and processing self-report data. We argue for a cohesive approach in neurophysiological studies to capture a consistent representation of flow states.
RESUMEN
We present a genome assembly from an individual male Cerastis rubricosa (the Red Chestnut moth; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 678.7 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.39 kilobases in length. Gene annotation of this assembly on Ensembl identified 18,784 protein coding genes.
RESUMEN
We present a genome assembly from an individual male Synanthedon andrenaeformis (the Orange-tailed Clearwing; Arthropoda; Insecta; Lepidoptera; Sesiidae). The genome sequence is 348.4 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.65 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,867 protein coding genes.
RESUMEN
We present a genome assembly from an individual male Biston strataria (the Oak Beauty; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 424.0 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.61 kilobases in length. Gene annotation of this assembly on Ensembl identified 18,406 protein coding genes.
RESUMEN
We present a genome assembly from an individual male Mythimna albipuncta (the White-point; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 698.6 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,679 protein coding genes.
RESUMEN
Difficulties in reasoning about others' mental states (i.e., mentalising/Theory of Mind) are highly prevalent among disorders featuring dopamine dysfunctions (e.g., Parkinson's disease) and significantly affect individuals' quality of life. However, due to multiple confounding factors inherent to existing patient studies, currently little is known about whether these sociocognitive symptoms originate from aberrant dopamine signalling or from psychosocial changes unrelated to dopamine. The present study, therefore, investigated the role of dopamine in modulating mentalising in a sample of healthy volunteers. We used a double-blind, placebo-controlled procedure to test the effect of the D2/D3 antagonist haloperidol on mental state attribution, using an adaptation of the Heider and Simmel (1944) animations task. On 2 separate days, once after receiving 2.5 mg haloperidol and once after receiving placebo, 33 healthy adult participants viewed and labelled short videos of 2 triangles depicting mental state (involving mentalistic interaction wherein 1 triangle intends to cause or act upon a particular mental state in the other, e.g., surprising) and non-mental state (involving reciprocal interaction without the intention to cause/act upon the other triangle's mental state, e.g., following) interactions. Using Bayesian mixed effects models, we observed that haloperidol decreased accuracy in labelling both mental and non-mental state animations. Our secondary analyses suggest that dopamine modulates inference from mental and non-mental state animations via independent mechanisms, pointing towards 2 putative pathways underlying the dopaminergic modulation of mental state attribution: action representation and a shared mechanism supporting mentalising and emotion recognition. We conclude that dopaminergic pathways impact Theory of Mind, at least indirectly. Our results have implications for the neurochemical basis of sociocognitive difficulties in patients with dopamine dysfunctions and generate new hypotheses about the specific dopamine-mediated mechanisms underlying social cognition.
Asunto(s)
Haloperidol , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Humanos , Receptores de Dopamina D2/metabolismo , Masculino , Adulto , Haloperidol/farmacología , Femenino , Receptores de Dopamina D3/metabolismo , Método Doble Ciego , Adulto Joven , Teoría de la Mente , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , MentalizaciónRESUMEN
We present a genome assembly from an individual male Amphimallon solstitiale (the Summer Chafer; Arthropoda; Insecta; Coleoptera; Scarabaeidae). The genome sequence is 1,584.1 megabases in span. Most of the assembly is scaffolded into 11 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled and is 19.29 kilobases in length.
RESUMEN
We present a genome assembly from an individual male Saturnia pavonia (the Emperor moth; Arthropoda; Insecta; Lepidoptera; Saturniidae). The genome sequence is 489.9 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.29 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,903 protein coding genes.
RESUMEN
The proportions of A:T and G:C nucleotide pairs are often unequal and can vary greatly between animal species and along chromosomes. The causes and consequences of this variation are incompletely understood. The recent release of high-quality genome sequences from the Darwin Tree of Life and other large-scale genome projects provides an opportunity for GC heterogeneity to be compared across a large number of insect species. Here we analyse GC content along chromosomes, and within protein-coding genes and codons, of 150 insect species from four holometabolous orders: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We find that protein-coding sequences have higher GC content than the genome average, and that Lepidoptera generally have higher GC content than the other three insect orders examined. GC content is higher in small chromosomes in most Lepidoptera species, but this pattern is less consistent in other orders. GC content also increases towards subtelomeric regions within protein-coding genes in Diptera, Coleoptera and Lepidoptera. Two species of Diptera, Bombylius major and B. discolor, have very atypical genomes with ubiquitous increase in AT content, especially at third codon positions. Despite dramatic AT-biased codon usage, we find no evidence that this has driven divergent protein evolution. We argue that the GC landscape of Lepidoptera, Diptera and Coleoptera genomes is influenced by GC-biased gene conversion, strongest in Lepidoptera, with some outlier taxa affected drastically by counteracting processes.
Asunto(s)
Genoma de los Insectos , Insectos , Animales , Composición de Base , Filogenia , Genoma de los Insectos/genética , Codón/genética , Insectos/genética , Evolución MolecularRESUMEN
Optical markerless hand-tracking systems incorporated into virtual reality (VR) headsets are transforming the ability to assess fine motor skills in VR. This promises to have far-reaching implications for the increased applicability of VR across scientific, industrial, and clinical settings. However, so far, there are little data regarding the accuracy, delay, and overall performance of these types of hand-tracking systems. Here we present a novel methodological framework based on a fixed grid of targets, which can be easily applied to measure these systems' absolute positional error and delay. We also demonstrate a method to assess finger joint-angle accuracy. We used this framework to evaluate the Meta Quest 2 hand-tracking system. Our results showed an average fingertip positional error of 1.1cm, an average finger joint angle error of 9.6∘ and an average temporal delay of 45.0 ms. This methodological framework provides a powerful tool to ensure the reliability and validity of data originating from VR-based, markerless hand-tracking systems.
Asunto(s)
Mano , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Dedos , Interfaz Usuario-ComputadorRESUMEN
The Hox gene cluster is an iconic example of evolutionary conservation between divergent animal lineages, providing evidence for ancient similarities in the genetic control of embryonic development. However, there are differences between taxa in gene order, gene number and genomic organisation implying conservation is not absolute. There are also examples of radical functional change of Hox genes; for example, the ftz, zen and bcd genes in insects play roles in segmentation, extraembryonic membrane formation and body polarity, rather than specification of anteroposterior position. There have been detailed descriptions of Hox genes and Hox gene clusters in several insect species, including important model systems, but a large-scale overview has been lacking. Here we extend these studies using the publicly-available complete genome sequences of 243 insect species from 13 orders. We show that the insect Hox cluster is characterised by large intergenic distances, consistently extreme in Odonata, Orthoptera, Hemiptera and Trichoptera, and always larger between the 'posterior' Hox genes. We find duplications of ftz and zen in many species and multiple independent cluster breaks, although certain modules of neighbouring genes are rarely broken apart suggesting some organisational constraints. As more high-quality genomes are obtained, a challenge will be to relate structural genomic changes to phenotypic change across insect phylogeny.
RESUMEN
We present a genome assembly from an individual male Esperia sulphurella (the Sulphur Tubic; Arthropoda; Insecta; Lepidoptera; Oecophoridae). The genome sequence is 453.2 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 16.2 kilobases in length.