Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(46): eadi1160, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37967179

RESUMEN

Ultrashort light pulses induce rapid deformations of crystalline lattices. In ferroelectrics, lattice deformations couple directly to the polarization, which opens the perspective to modulate the electric polarization on an ultrafast time scale. Here, we report on the temporal and spatial tracking of strain and polar modulation in a single-domain BiFeO3 thin film by ultrashort light pulses. To map the light-induced deformation of the BiFeO3 unit cell, we perform time-resolved optical reflectivity and time-resolved x-ray diffraction. We show that an optical femtosecond laser pulse generates not only longitudinal but also shear strains. The longitudinal strain peaks at a large amplitude of 0.6%. The access of both the longitudinal and shear strains enables to quantitatively reconstruct the ultrafast deformation of the unit cell and to infer the corresponding reorientation of the ferroelectric polarization direction in space and time. Our findings open new perspectives for ultrafast manipulation of strain-coupled ferroic orders.

2.
Faraday Discuss ; 236(0): 442-460, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35510575

RESUMEN

We have monitored the temporal evolution of the band bending at controlled silicon surfaces after a fs laser pump excitation. Time-resolved surface photo-voltage (SPV) experiments were performed using time resolved photoemission spectroscopy with time resolution of about 30 ns. To disentangle the influence of doping and surface termination on SPV dynamics, we compare the results obtained on two surface terminations: the water saturated (H,OH)-Si(001) surface and the thermally oxidized Si(001) one. The SPV dynamics were explored as a function of laser fluence and as a function of time for the two surface terminations at given doping levels. The return to equilibrium involves a characteristic time in the 0.1 µs to 10 µs range, depending on the surface termination and bulk doping. Exploring several laser fluences, different SPV regimes were found for the two surface terminations at given doping levels. For low laser fluence the SPV dynamic follows the commonly accepted thermionic model. At higher fluence, the SPV signal reaches a saturation value, and if the fluence is further increased, the decay time of the SPV increases and can no longer be explained by a thermionic model alone.

3.
J Synchrotron Radiat ; 25(Pt 2): 385-398, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488917

RESUMEN

The investigation of ultrafast dynamics, taking place on the few to sub-picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X-ray free-electron lasers (XFELs), providing very intense X-ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub-picosecond pulsed X-ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY-II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub-picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X-ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing-induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.

4.
J Synchrotron Radiat ; 24(Pt 4): 886-897, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28664896

RESUMEN

The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...