Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105100, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507019

RESUMEN

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , ARN Nucleotidiltransferasas , Humanos , Intrones , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Empalme del ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática/genética , Dominios Proteicos , Unión Proteica , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Metales Pesados/metabolismo
2.
Nat Commun ; 14(1): 432, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702902

RESUMEN

The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.


Asunto(s)
Replicación del ADN , Recombinasa Rad51 , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN , Proteína BRCA2/metabolismo , ADN , Recombinación Homóloga
3.
Biochemistry ; 61(24): 2933-2939, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36484984

RESUMEN

The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.


Asunto(s)
ARN Nucleotidiltransferasas , ARN , Humanos , ARN/química , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Empalme del ARN , Fosfatos/metabolismo
4.
RNA ; 28(7): 927-936, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459748

RESUMEN

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Intrones , Metales , ARN/química , ARN Nucleotidiltransferasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Biomol NMR Assign ; 16(1): 67-73, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994941

RESUMEN

The RNA-binding protein EWS is a multifunctional protein with roles in the regulation of transcription and RNA splicing. It is one of the FET (FUS, EWS and TAF15) family of RNA binding proteins that contain an intrinsically disordered, low-complexity N-terminal domain. The FET family proteins are prone to chromosomal translocations, often fusing their low-complexity domain with a transcription factor derived DNA-binding domain, that are oncogenic drivers in several leukemias and sarcomas. The fusion protein disrupts the normal function of cells through non-canonical DNA binding and alteration of normal transcriptional programs. However, the exact mechanism for how the intrinsically disordered domain contributes to aberrant DNA binding and abnormal transcription is unknown. The purification and 1H, 13C, and 15N backbone resonance assignments of the amino terminal domain comprising 264 residues of EWS is described. This segment is common to all known EWS-fusions that are the hallmark of the pediatric cancer Ewing sarcoma. This domain is intrinsically disordered and features significant sequence degeneracy resulting in spectra with poor chemical shift dispersion. To alleviate this problem, the domain was divided into three overlapping fragments, reducing the complexity of the spectra and enabling almost complete backbone resonance assignment of the full domain. These solution NMR chemical shift assignments represent the first steps towards understanding, at atomic resolution, how the low-complexity domain of EWS contributes to the aberrant functions of its oncogenic fusion proteins.


Asunto(s)
ADN , Proteína Proto-Oncogénica c-fli-1 , Niño , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteínas de Fusión Oncogénica , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
6.
Biochemistry ; 60(20): 1597-1608, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33961402

RESUMEN

Copper-zinc superoxide dismutase (SOD1) is a major antioxidant metalloenzyme that protects cells from oxidative damage by superoxide anions (O2-). Structural, biophysical, and other characteristics have in the past been compiled for mammalian SOD1s and for the highly homologous fungal and bovine SOD1s. Here, we characterize the biophysical properties of a plant SOD1 from tomato chloroplasts and present several of its crystal structures. The most unusual of these structures is a structure at low pH in which tSOD1 harbors zinc in the copper-binding site but contains no metal in the zinc-binding site. The side chain of D83, normally a zinc ligand, adopts an alternate rotameric conformation to form an unusual bidentate hydrogen bond with the side chain of D124, precluding metal binding in the zinc-binding site. This alternate conformation of D83 appears to be responsible for the previously observed pH-dependent loss of zinc from the zinc-binding site of SOD1. Titrations of cobalt into apo tSOD1 at a similar pH support the lack of an intact zinc-binding site. Further characterization of tSOD1 reveals that it is a weaker dimer relative to human SOD1 and that it can be activated in vivo through a copper chaperone for the SOD1-independent mechanism.


Asunto(s)
Solanum lycopersicum/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Sitios de Unión , Quelantes , Cobre/metabolismo , Disulfuros/química , Concentración de Iones de Hidrógeno , Ligandos , Solanum lycopersicum/fisiología , Metales , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Superóxido Dismutasa/fisiología , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Superóxidos , Zinc/metabolismo
7.
PLoS Negl Trop Dis ; 14(8): e0008517, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32810153

RESUMEN

Currently there is only one method of treatment for human schistosomiasis, the drug praziquantel. Strong selective pressure has caused a serious concern for a rise in resistance to praziquantel leading to the necessity for additional pharmaceuticals, with a distinctly different mechanism of action, to be used in combination therapy with praziquantel. Previous treatment of Schistosoma mansoni included the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The oxamniquine activating enzyme was identified as a S. mansoni sulfotransferase (SmSULT-OR). Structural data have allowed for directed drug development in reengineering oxamniquine to be effective against S. haematobium and S. japonicum. Guided by data from X-ray crystallographic studies and Schistosoma worm killing assays on oxamniquine, our structure-based drug design approach produced a robust SAR program that tested over 300 derivatives and identified several new lead compounds with effective worm killing in vitro. Previous studies resulted in the discovery of compound CIDD-0066790, which demonstrated broad-species activity in killing of schistosome species. As these compounds are racemic mixtures, we tested and demonstrate that the R enantiomer CIDD-007229 kills S. mansoni, S. haematobium and S. japonicum better than the parent drug (CIDD-0066790). The search for derivatives that kill better than CIDD-0066790 has resulted in a derivative (CIDD- 149830) that kills 100% of S. mansoni, S. haematobium and S. japonicum adult worms within 7 days. We hypothesize that the difference in activation and thus killing by the derivatives is due to the ability of the derivative to fit in the binding pocket of each sulfotransferase (SmSULT-OR, ShSULT-OR, SjSULT-OR) and to be efficiently sulfated. The purpose of this research is to develop a second drug to be used in conjunction with praziquantel to treat the major human species of Schistosoma. Collectively, our findings show that CIDD-00149830 and CIDD-0072229 are promising novel drugs for the treatment of human schistosomiasis and strongly support further development and in vivo testing.


Asunto(s)
Antihelmínticos/farmacología , Oxamniquina/análogos & derivados , Oxamniquina/farmacología , Schistosoma/efectos de los fármacos , Esquistosomiasis/parasitología , Animales , Antihelmínticos/química , Simulación por Computador , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Estructura Molecular , Oxamniquina/química , Unión Proteica
8.
Artículo en Inglés | MEDLINE | ID: mdl-32315953

RESUMEN

Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.


Asunto(s)
Oxamniquina/farmacología , Schistosoma/efectos de los fármacos , Sulfotransferasas/química , Animales , Estructura Molecular , Schistosoma/metabolismo , Schistosoma haematobium/efectos de los fármacos , Schistosoma haematobium/metabolismo , Schistosoma japonicum/efectos de los fármacos , Schistosoma japonicum/metabolismo , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Esquistosomicidas/farmacología , Sulfotransferasas/efectos de los fármacos , Sulfotransferasas/metabolismo
9.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31652296

RESUMEN

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Asunto(s)
Resistencia a Medicamentos/genética , Oxamniquina/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/genética , Esquistosomicidas/uso terapéutico , Adaptación Fisiológica/genética , Alelos , Animales , Cricetinae , Humanos , Niger , Omán , Polimorfismo de Nucleótido Simple/genética , Ratas , Esquistosomiasis mansoni/tratamiento farmacológico , Senegal , Caracoles/parasitología , Tanzanía
10.
Cell ; 172(5): 952-965.e18, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474921

RESUMEN

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Asunto(s)
Encefalopatías Metabólicas Innatas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virología , ARN/química , ARN/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Encefalopatías Metabólicas Innatas/patología , Tronco Encefálico/patología , Encefalitis Viral/genética , Escherichia coli/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Herpesvirus Humano 1 , Humanos , Interferones/metabolismo , Intrones/genética , Masculino , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Sistemas de Lectura Abierta/genética , Linaje , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/deficiencia , ARN Nucleotidiltransferasas/genética , Receptor Toll-Like 3/metabolismo , Replicación Viral
11.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536265

RESUMEN

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Asunto(s)
Resistencia a Medicamentos , Proteínas del Helminto/química , Oxamniquina , Schistosoma haematobium/enzimología , Schistosoma japonicum/enzimología , Sulfotransferasas/química , Animales , Cristalografía por Rayos X , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferasas/genética
12.
Proc Natl Acad Sci U S A ; 113(51): 14727-14732, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930312

RESUMEN

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ∼3 s-1 Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ∼4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the ß-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.


Asunto(s)
Cristalografía por Rayos X/métodos , Entamoeba histolytica/enzimología , Proteínas Protozoarias/química , ARN Nucleotidiltransferasas/química , ARN/química , Catálisis , Cristalización , Hidrólisis , Intrones , Hierro/química , Cinética , Espectrometría de Masas , Mutación , Péptidos/química , Precursores del ARN/química , Empalme del ARN , ARN Circular , Rayos X , Zinc/química
13.
Int J Parasitol ; 46(7): 417-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27073078

RESUMEN

Molecular surveillance provides a powerful approach to monitoring the resistance status of parasite populations in the field and for understanding resistance evolution. Oxamniquine was used to treat Brazilian schistosomiasis patients (mid-1970s to mid-2000s) and several cases of parasite infections resistant to treatment were recorded. The gene underlying resistance (SmSULT-OR) encodes a sulfotransferase required for intracellular drug activation. Resistance has a recessive basis and occurs when both SmSULT-OR alleles encode for defective proteins. Here we examine SmSULT-OR sequence variation in a natural schistosome population in Brazil ∼40years after the first use of this drug. We sequenced SmSULT-OR from 189 individual miracidia (1-11 per patient) recovered from 49 patients, and tested proteins expressed from putative resistance alleles for their ability to activate oxamniquine. We found nine mutations (four non-synonymous single nucleotide polymorphisms, three non-coding single nucleotide polymorphisms and two indels). Both mutations (p.E142del and p.C35R) identified previously were recovered in this field population. We also found two additional mutations (a splice site variant and 1bp coding insertion) predicted to encode non-functional truncated proteins. Two additional substitutions (p.G206V, p.N215Y) tested had no impact on oxamniquine activation. Three results are of particular interest: (i) we recovered the p.E142del mutation from the field: this same deletion is responsible for resistance in an oxamniquine selected laboratory parasite population; (ii) frequencies of resistance alleles are extremely low (0.27-0.8%), perhaps due to fitness costs associated with carriage of these alleles; (iii) that four independent resistant alleles were found is consistent with the idea that multiple mutations can generate loss-of-function alleles.


Asunto(s)
Mutación , Oxamniquina/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis/parasitología , Esquistosomicidas/farmacología , Alelos , Animales , Brasil , Niño , Preescolar , Resistencia a Medicamentos/genética , Exones/genética , Heces/parasitología , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Conformación Molecular , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Schistosoma mansoni/genética
14.
PLoS Negl Trop Dis ; 9(10): e0004132, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26485649

RESUMEN

BACKGROUND: For over two decades, a racemic mixture of oxamniquine (OXA) was administered to patients infected by Schistosoma mansoni, but whether one or both enantiomers exert antischistosomal activity was unknown. Recently, a ~30 kDa S. mansoni sulfotransferase (SmSULT) was identified as the target of OXA action. METHODOLOGY/PRINCIPAL FINDINGS: Here, we separate the OXA enantiomers using chromatographic methods and assign their optical activities as dextrorotary [(+)-OXA] or levorotary [(-)-OXA]. Crystal structures of the parasite enzyme in complex with optically pure (+)-OXA and (-)-OXA) reveal their absolute configurations as S- and R-, respectively. When tested in vitro, S-OXA demonstrated the bulk of schistosomicidal activity, while R-OXA had antischistosomal effects when present at relatively high concentrations. Crystal structures R-OXA•SmSULT and S-OXA•SmSULT complexes reveal similarities in the modes of OXA binding, but only the S-OXA enantiomer is observed in the structure of the enzyme exposed to racemic OXA. CONCLUSIONS/SIGNIFICANCE: Together the data suggest the higher schistosomicidal activity of S-OXA is correlated with its ability to outcompete R-OXA binding the sulfotransferase active site. These findings have important implications for the design, syntheses, and dosing of new OXA-based antischistosomal compounds.


Asunto(s)
Antihelmínticos/química , Antihelmínticos/farmacología , Oxamniquina/química , Oxamniquina/farmacología , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/química , Animales , Cromatografía , Cristalografía por Rayos X , Femenino , Ratones , Modelos Moleculares , Pruebas de Sensibilidad Parasitaria , Unión Proteica , Conformación Proteica , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , Estereoisomerismo
15.
Proc Natl Acad Sci U S A ; 112(16): 5165-70, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848012

RESUMEN

Mycoplasma pneumoniae (Mp) infections cause tracheobronchitis and "walking" pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. Here we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem ß-trefoil domains associate to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal ß-trefoil domain. The results enhance our understanding of Mp pathogenicity and suggest a novel avenue for the development of therapies to treat Mp-associated asthma and other acute and chronic airway diseases.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Citotoxinas/química , Mycoplasma pneumoniae/metabolismo , Vacuolas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Citotoxinas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilcolinas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Esfingomielinas/metabolismo , Relación Estructura-Actividad
16.
J Biol Chem ; 290(4): 2405-18, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25433341

RESUMEN

The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.


Asunto(s)
Proteínas Mutantes/química , Proteínas de Saccharomyces cerevisiae/química , Superóxido Dismutasa/química , Esclerosis Amiotrófica Lateral/genética , Apoproteínas/química , Rastreo Diferencial de Calorimetría , Disulfuros/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Espectrometría de Masas , Metales/química , Mutación , Estrés Oxidativo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría , Superóxidos/química , Zinc/química
17.
Nucleic Acids Res ; 42(16): 10845-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25123664

RESUMEN

The enzymatic processing of cellular RNA molecules requires selective recognition of unique chemical and topological features. The unusual 2',5'-phosphodiester linkages in RNA lariats produced by the spliceosome must be hydrolyzed by the intron debranching enzyme (Dbr1) before they can be metabolized or processed into essential cellular factors, such as snoRNA and miRNA. Dbr1 is also involved in the propagation of retrotransposons and retroviruses, although the precise role played by the enzyme in these processes is poorly understood. Here, we report the first structures of Dbr1 alone and in complex with several synthetic RNA compounds that mimic the branchpoint in lariat RNA. The structures, together with functional data on Dbr1 variants, reveal the molecular basis for 2',5'-phosphodiester recognition and explain why the enzyme lacks activity toward 3',5'-phosphodiester linkages. The findings illuminate structure/function relationships in a unique enzyme that is central to eukaryotic RNA metabolism and set the stage for the rational design of inhibitors that may represent novel therapeutic agents to treat retroviral infections and neurodegenerative disease.


Asunto(s)
Intrones , ARN Nucleotidiltransferasas/química , Entamoeba histolytica/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , ARN Nucleotidiltransferasas/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(16): 5866-71, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711423

RESUMEN

The human fungal pathogens Candida albicans and Histoplasma capsulatum have been reported to protect against the oxidative burst of host innate immune cells using a family of extracellular proteins with similarity to Cu/Zn superoxide dismutase 1 (SOD1). We report here that these molecules are widespread throughout fungi and deviate from canonical SOD1 at the primary, tertiary, and quaternary levels. The structure of C. albicans SOD5 reveals that although the ß-barrel of Cu/Zn SODs is largely preserved, SOD5 is a monomeric copper protein that lacks a zinc-binding site and is missing the electrostatic loop element proposed to promote catalysis through superoxide guidance. Without an electrostatic loop, the copper site of SOD5 is not recessed and is readily accessible to bulk solvent. Despite these structural deviations, SOD5 has the capacity to disproportionate superoxide with kinetics that approach diffusion limits, similar to those of canonical SOD1. In cultures of C. albicans, SOD5 is secreted in a disulfide-oxidized form and apo-pools of secreted SOD5 can readily capture extracellular copper for rapid induction of enzyme activity. We suggest that the unusual attributes of SOD5-like fungal proteins, including the absence of zinc and an open active site that readily captures extracellular copper, make these SODs well suited to meet challenges in zinc and copper availability at the host-pathogen interface.


Asunto(s)
Candida albicans/enzimología , Candida albicans/inmunología , Cobre/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Espacio Extracelular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Radiólisis de Impulso , Análisis de Secuencia de Proteína , Homología Estructural de Proteína , Superóxido Dismutasa/química
19.
Science ; 342(6164): 1385-9, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24263136

RESUMEN

Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for >99% of schistosomiasis cases worldwide.


Asunto(s)
Resistencia a Medicamentos/genética , Proteínas del Helminto/genética , Oxamniquina/farmacología , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/genética , Esquistosomicidas/farmacología , Sulfotransferasas/genética , Secuencia de Aminoácidos , Animales , Técnicas de Silenciamiento del Gen , Ligamiento Genético , Humanos , Datos de Secuencia Molecular , Mutación , Filogenia , Conformación Proteica , Sitios de Carácter Cuantitativo , Interferencia de ARN , Sulfotransferasas/química , Sulfotransferasas/clasificación
20.
J Biol Chem ; 288(30): 22068-79, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23703617

RESUMEN

Chlamydia trachomatis infection is the most common sexually transmitted bacterial disease. Left untreated, it can lead to ectopic pregnancy, pelvic inflammatory disease, and infertility. Here we present the structure of the secreted C. trachomatis protein Pgp3, an immunodominant antigen and putative virulence factor. The ∼84-kDa Pgp3 homotrimer, encoded on a cryptic plasmid, consists of globular N- and C-terminal assemblies connected by a triple-helical coiled-coil. The C-terminal domains possess folds similar to members of the TNF family of cytokines. The closest Pgp3 C-terminal domain structural homologs include a lectin from Burkholderia cenocepacia, the C1q component of complement, and a portion of the Bacillus anthracis spore surface protein BclA, all of which play roles in bioadhesion. The N-terminal domain consists of a concatenation of structural motifs typically found in trimeric viral proteins. The central parallel triple-helical coiled-coil contains an unusual alternating pattern of apolar and polar residue pairs that generate a rare right-handed superhelical twist. The unique architecture of Pgp3 provides the basis for understanding its role in chlamydial pathogenesis and serves as the platform for its optimization as a potential vaccine antigen candidate.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Epítopos Inmunodominantes/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/inmunología , Cristalografía por Rayos X , Femenino , Humanos , Epítopos Inmunodominantes/genética , Modelos Moleculares , Embarazo , Embarazo Ectópico/microbiología , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...