Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 323(2): F156-F170, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695380

RESUMEN

The lysosomal storage disease cystinosis is caused by mutations in CTNS, encoding the cystine transporter cystinosin, and in its severest form leads to proximal tubule dysfunction followed by kidney failure. Patients receive the drug-based therapy cysteamine from diagnosis. However, despite long-term treatment, cysteamine only slows the progression of end-stage renal disease. Preclinical testing in cystinotic rodents is required to evaluate new therapies; however, the current models are suboptimal. To solve this problem, we generated a new cystinotic rat model using CRISPR/Cas9-mediated gene editing to disrupt exon 3 of Ctns and measured various parameters over a 12-mo time course. Ctns-/- rats display hallmarks of cystinosis by 3-6 mo of age, as demonstrated by a failure to thrive, excessive thirst and urination, cystine accumulation in tissues, corneal cystine crystals, loss of LDL receptor-related protein 2 in proximal tubules, and immune cell infiltration. High levels of glucose, calcium, albumin, and protein were excreted at 6 mo of age, consistent with the onset of Fanconi syndrome, with a progressive diminution of urine urea and creatinine from 9 mo of age, indicative of chronic kidney disease. Kidney histology and immunohistochemistry showed proximal tubule atrophy and glomerular damage as well as classic "swan neck" lesions. Overall, Ctns-/- rats show a disease progression that more faithfully recapitulates nephropathic cystinosis than existing rodent models. The Ctns-/- rat provides an excellent new rodent model of nephropathic cystinosis that is ideally suited for conducting preclinical drug testing and is a powerful tool to advance cystinosis research.NEW & NOTEWORTHY Animal models of disease are essential to perform preclinical testing of new therapies before they can progress to clinical trials. The cystinosis field has been hampered by a lack of suitable animal models that fully recapitulate the disease. Here, we generated a rat model of cystinosis that closely models the human condition in a timeframe that makes them an excellent model for preclinical drug testing as well as being a powerful tool to advance research.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Síndrome de Fanconi , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Cisteamina/farmacología , Cisteamina/uso terapéutico , Cistina/genética , Cistina/metabolismo , Cistina/uso terapéutico , Cistinosis/tratamiento farmacológico , Cistinosis/genética , Cistinosis/metabolismo , Síndrome de Fanconi/genética , Fenotipo , Ratas
2.
Oncol Ther ; 9(2): 541-556, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34159519

RESUMEN

Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors.

3.
Cells ; 11(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35011573

RESUMEN

The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.


Asunto(s)
Cistinosis/patología , Enfermedades Renales/patología , Animales , Cistinosis/genética , Modelos Animales de Enfermedad , Humanos , Enfermedades Renales/genética , Mutación/genética , Organoides/patología , ARN Interferente Pequeño/metabolismo
4.
J Am Soc Nephrol ; 31(5): 962-982, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198276

RESUMEN

BACKGROUND: Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS: To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS: Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS: These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.


Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Everolimus/uso terapéutico , Células Madre Pluripotentes Inducidas/trasplante , Organoides/trasplante , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Autofagia/efectos de los fármacos , Sistemas CRISPR-Cas , Línea Celular , Cisteamina/farmacología , Cistina/sangre , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Everolimus/farmacología , Edición Génica , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Ratones , Ratones SCID , Organoides/metabolismo , Fenotipo
5.
Stem Cell Reports ; 11(2): 470-484, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30033089

RESUMEN

Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Riñón/citología , Organoides/citología , Células Madre Pluripotentes/citología , Biomarcadores , Diferenciación Celular , Fibrosis , Técnicas de Inactivación de Genes , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Riñón/embriología , Nefronas/citología
6.
PLoS One ; 12(9): e0184009, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863137

RESUMEN

Cystic Fibrosis is an autosomal recessive disorder caused by mutations in the CFTR gene. CRISPR mediated, template-dependent homology-directed gene editing has been used to correct the most common mutation, c.1521_1523delCTT / p.Phe508del (F508del) which affects ~70% of individuals, but the efficiency was relatively low. Here, we describe a high efficiency strategy for editing of three different rare CFTR mutations which together account for about 3% of individuals with Cystic Fibrosis. The mutations cause aberrant splicing of CFTR mRNA due to the creation of cryptic splice signals that result in the formation of pseudoexons containing premature stop codons c.1679+1634A>G (1811+1.6kbA>G) and c.3718-2477C>T (3849+10kbC>T), or an out-of-frame 5' extension to an existing exon c.3140-26A>G (3272-26A>G). We designed pairs of Cas9 guide RNAs to create targeted double-stranded breaks in CFTR either side of each mutation which resulted in high efficiency excision of the target genomic regions via non-homologous end-joining repair. When evaluated in a mini-gene splicing assay, we showed that targeted excision restored normal splicing for all three mutations. This approach could be used to correct aberrant splicing signals or remove disruptive transcription regulatory motifs caused by deep-intronic mutations in a range of other genetic disorders.


Asunto(s)
Sistemas CRISPR-Cas , Codón , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , ARN Guía de Kinetoplastida/genética , Empalme Alternativo , Secuencias de Aminoácidos , Separación Celular , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Exones , Citometría de Flujo , Eliminación de Gen , Humanos , Intrones , Mutación , Oligonucleótidos/genética , ARN Mensajero/genética
7.
Sci Rep ; 6: 32230, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27557525

RESUMEN

To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair.


Asunto(s)
Sistemas CRISPR-Cas , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Epiteliales , ARN Guía de Kinetoplastida , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
8.
Hum Genet ; 135(9): 983-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27325484

RESUMEN

Cystic fibrosis (CF) is a chronic and progressive autosomal recessive disorder of secretory epithelial cells, which causes obstructions in the lung airways and pancreatic ducts of 70,000 people worldwide (for recent review see Cutting Nat Rev Genet 16(1):45-56, 2015). The finding that mutations in the CFTR gene cause CF (Kerem et al. Science 245(4922):1073-1080, 1989; Riordan et al. Science 245(4922):1066-1073, 1989; Rommens et al. Science 245(4922):1059-1065, 1989), was hailed as the very happy middle of a story whose end is a cure for a fatal disease (Koshland Science 245(4922):1029, 1989). However, despite two licensed drugs (Ramsey et al. N Engl J Med 365(18):1663-1672, 2011; Wainwright et al. N Engl J Med 373(3):220-231, 2015), and a formal demonstration that repeated administration of CFTR cDNA to patients is safe and effects a modest but significant stabilisation of disease (Alton et al. Lancet Respir Med 3(9):684-691, 2015), we are still a long way from a cure, with many patients taking over 100 tablets per day, and a mean age at death of 28 years. The aim of this review is to discuss the impact on the study of CF of gene-editing techniques as they have developed over the last 30 years, up to and including the possibility of editing as a therapeutic approach.


Asunto(s)
Fibrosis Quística/genética , Edición Génica , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Modelos Genéticos
9.
Biores Open Access ; 1(3): 99-108, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23514673

RESUMEN

The use of zinc-finger nucleases (ZFNs) to permanently and precisely modify the human genome offers a potential alternative to cDNA-based gene therapy. The ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is observed in ∼70% of patients with cystic fibrosis (CF) and is a candidate for ZFN-mediated repair. Here, we report the modular design and synthesis of a pair of ZFNs that can create a double-stranded break (DSB) 203 bp upstream of the ΔF508 lesion, resulting in a nonhomologous end-joining (NHEJ) frequency of 7.8%. In spite of this relatively long distance between the DSB and the ΔF508 mutation, homology-directed repair (HDR) could be detected when using a DNA donor containing part of the wild-type (WT) CFTR. The ZFN target half-sites in CFTR are separated by a 4-bp spacer, but efficient cleavage of synthetic targets with either a 4- or 6-bp spacer was observed in vitro. These ZFNs may be suitable for a genome-editing strategy using a partial cDNA sequence-containing exons 10-24 of CFTR to restore CFTR function to cells containing not only the ΔF508 mutation but also potentially any mutation in or downstream of exon 10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...