Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dent Res ; : 220345241263320, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101637

RESUMEN

The sequalae of periodontitis include irreversible degradation of tooth-supporting structures and circulatory spread of inflammatory mediators. However, the serum protein profile in periodontitis is not well described, which is partly attributable to the limited number of studies based on large and well-characterized periodontitis cohorts. This study aims to identify novel, circulating inflammation-related proteins associated with periodontitis within the PerioGene North case-control study, which includes 478 cases with severe periodontitis and 509 periodontally healthy controls. The serum concentrations of high-sensitivity C-reactive protein (hs-CRP) and a panel of 45 inflammation-related proteins were analyzed using targeted proteomics. A distinguishable serum protein profile was evident in periodontitis cases. The protein pattern could separate cases from controls with a sensitivity of 0.81 and specificity of 0.81 (area under the curve = 0.87). Adjusted levels for hs-CRP and 24 of the 45 proteins were different between cases and controls. High levels of hs-CRP and matrix metalloproteinase-12, and low levels of epidermal growth factor (EGF) and oxidized low-density lipoprotein receptor 1 (OLR-1) were detected among the cases. Furthermore, the levels of C-C motif chemokine-19, granulocyte colony-stimulating factor-3 (CSF-3), interleukin-7 (IL-7), and hs-CRP were significantly higher in cases with a high degree of gingival inflammation. The levels of CSF-3 and tumor necrosis factor ligand superfamily member-10 TNFSF-10 were higher in cases with many deep periodontal pockets. The PerioGene North study includes detailed clinical periodontal data and uncovers a distinct serum protein profile in periodontitis. The findings of lower EGF and OLR-1 among the cases are highlighted, as this has not been presented before. The role of EGF and OLR-1 in periodontitis pathogenesis and as possible future biomarkers should be further explored.

2.
BMC Immunol ; 22(1): 77, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920714

RESUMEN

BACKGROUND: Inflammatory arthritis including rheumatoid arthritis (RA) and spondyloarthritis (SpA) is characterized by inflammation and destruction of the joints. Approximately one third of patients do not respond to first-line treatments. Nitro-fatty acids are bioactive lipids with anti-inflammatory properties and tissue-protective functions. The nitro-fatty acid 10-NO2-oleic acid (10-NO2-OA) is being tested in clinical trials for patients with fibrotic and inflammatory conditions. Here, we tested whether 10-NO2-OA could inhibit immune reactions involved in the inflammatory and joint destructive processes in inflammatory arthritis. METHODS: Synovial fluid and blood samples were obtained from 14 patients with active RA or SpA. The in vitro models consisted of synovial fluid mononuclear cells (SFMCs) cultured for 48 h, SFMCs cultured for 21 days, and fibroblast-like synovial cells (FLSs) co-cultured with peripheral blood mononuclear cells (PBMCs) for 48 h. Cells were treated with or without 10-NO2-OA or the tumor necrosis factor alpha (TNFα) inhibitor etanercept. Supernatants were analyzed for type I interferon, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase 3 (MMP3) and tartrate resistant acid phosphatase (TRAP). RESULTS: In SFMCs cultured for 48 h, 10-NO2-OA dose-dependently decreased the secretion of bioactive type I interferons and MCP-1 but not MMP3 (P = 0.032, P = 0.0001, and P = 0.58, respectively). Both MCP-1 and MMP3 were decreased by etanercept (P = 0.0031 and P = 0.026, respectively). In SFMCs cultured for 21 days, 10-NO2-OA significantly decreased the production of MCP-1 but not TRAP (P = 0.027 and P = 0.1523, respectively). Etanercept decreased the production of TRAP but not MCP-1 (P < 0.001 and P = 0.84, respectively). In co-cultures of FLSs and PBMCs, 10-NO2-OA decreased the production of MCP-1 (P < 0.0001). This decrease in MCP-1 production was not seen with etanercept treatment (P = 0.47). CONCLUSION: 10-NO2-OA decreased the release of MCP-1 in three models of inflammatory arthritis. Of particular interest, 10-NO2-OA inhibited type I interferon, and 10-NO2-OA was more effective in reducing MCP-1 production in cultures dominated by FLSs compared with etanercept. Our results encourage clinical investigations of 10-NO2-OA in patients with inflammatory arthritis.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Reumatoide/metabolismo , Fibroblastos/fisiología , Leucocitos Mononucleares/inmunología , Ácidos Oléicos/metabolismo , Espondilitis Anquilosante/metabolismo , Líquido Sinovial/inmunología , Adulto , Células Cultivadas , Quimiocina CCL2/metabolismo , Técnicas de Cocultivo , Etanercept/farmacología , Femenino , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad
3.
Nat Commun ; 8: 14391, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186168

RESUMEN

Innate immune activation by macrophages is an essential part of host defence against infection. Cytosolic recognition of microbial DNA in macrophages leads to induction of interferons and cytokines through activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Other host factors, including interferon-gamma inducible factor 16 (IFI16), have been proposed to contribute to immune activation by DNA. However, their relation to the cGAS-STING pathway is not clear. Here, we show that IFI16 functions in the cGAS-STING pathway on two distinct levels. Depletion of IFI16 in macrophages impairs cGAMP production on DNA stimulation, whereas overexpression of IFI16 amplifies the function of cGAS. Furthermore, IFI16 is vital for the downstream signalling stimulated by cGAMP, facilitating recruitment and activation of TANK-binding kinase 1 in STING complex. Collectively, our results suggest that IFI16 is essential for efficient sensing and signalling upon DNA challenge in macrophages to promote interferons and antiviral responses.


Asunto(s)
ADN/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Nucleótidos Cíclicos/metabolismo , Fosfoproteínas/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata/genética , Interferones/inmunología , Interferones/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Nucleares/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...