Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Mol Biol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105593

RESUMEN

Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.

2.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38854138

RESUMEN

Survival through periods of drought is critical for mosquitoes to reside in semi-arid regions with humans, but water sources may be limited. Previous studies have shown that dehydrated mosquitoes will increase blood feeding propensity, but how this would occur over extended dry periods is unknown. Following a bloodmeal, prolonged exposure to dry conditions increased secondary blood feeding in mosquitoes by nearly two-fold, and chronic blood feeding allowed mosquitoes to survive twenty days without access to water sources. This refeeding did not alter the number of eggs generated, suggesting this refeeding is for hydration and nutrient replenishment. Exposure to desiccating conditions following a bloodmeal resulted in increased activity, decreased sleep levels, and prompted a return of CO2 sensing before egg deposition. The increased blood feeding during the vitellogenic stage and higher survival during dry periods are predicted to increase pathogen transmission and explain the elevated levels of specific arbovirus cases during dry conditions. These results solidify our understanding of the role of dry periods on mosquito blood feeding and how mosquito dehydration contributes to vectorial capacity and disease transmission dynamics.

3.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076852

RESUMEN

Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.

4.
J Virol ; 97(12): e0069523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38051046

RESUMEN

IMPORTANCE: Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.


Asunto(s)
Aedes , Alphavirus , Mosquitos Vectores , Animales , Aedes/fisiología , Aedes/virología , Alphavirus/fisiología , Deshidratación
5.
Insects ; 14(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975959

RESUMEN

The mosquito midgut is an important site for bloodmeal regulation while also acting as a primary site for pathogen exposure within the mosquito. Recent studies show that exposure to dehydrating conditions alters mosquito bloodfeeding behaviors as well as post-feeding regulation, likely altering how pathogens interact with the mosquito. Unfortunately, few studies have explored the underlying dynamics between dehydration and bloodmeal utilization, and the overall impact on disease transmission dynamics remains veiled. In this study, we find that dehydration-based feeding in the yellow fever mosquito, Aedes aegypti, prompts alterations to midgut gene expression, as well as subsequent physiological factors involving water control and post-bloodfeeding (pbf) regulation. Altered expression of ion transporter genes and aquaporin 2 (AQP2) in the midgut of dehydrated mosquitoes as well as the rapid reequilibration of hemolymph osmolality after a bloodmeal indicate an ability to expedite fluid and ion processing. These alterations ultimately indicate that female A. aegypti employ mechanisms to ameliorate the detriments of dehydration by imbibing a bloodmeal, providing an effective avenue for rehydration. Continued research into bloodmeal utilization and the resulting effects on arthropod-borne transmission dynamics becomes increasingly important as drought prevalence is increased by climate change.

6.
J Insect Physiol ; 137: 104363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35121007

RESUMEN

Mosquitoes readily lose water when exposed to any humidity less than that of near saturated air unless mitigated, leading to shifts in behavior, survival, distribution, and reproduction. In this study, we conducted a series of physiological experiments on two prominent species in the Culicinae subfamily: Culex pipiens, a vector of West Nile virus, and Aedes aegypti, a vector of yellow fever and Zika to examine the effects of dehydration. We exposed C. pipiens and A. aegypti to non-dehydrating conditions (saturated air), dehydrating conditions (air at a 0.89 kPa saturation vapor pressure deficit), several recovery conditions, as well as to bloodfeeding opportunities. We show that dehydrated mosquitoes increase bloodfeeding propensity, improve retention, and decrease excretion of a post-dehydration bloodmeal. In addition, mosquitoes that take a bloodmeal prior to dehydration exposure show increased survival over non-bloodfed counterparts. Dehydration-induced alterations in survival, reproduction, and bloodfeeding propensity of C. pipiens and A. aegypti resulted in marked changes to vectorial capacity. Ultimately, these results become increasingly important as drought intensifies in association with climate change and mosquitoes become more likely to experience arid periods.


Asunto(s)
Aedes , Culex , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Aedes/fisiología , Animales , Culex/fisiología , Deshidratación , Mosquitos Vectores/fisiología
8.
BMC Biol ; 19(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750380

RESUMEN

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Asunto(s)
Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Control de Insectos , Muscidae/genética , Animales , Reproducción/genética
9.
J Vector Ecol ; 46(2): 200-206, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35230024

RESUMEN

Predator-prey interactions can have a significant impact on the abundance and distribution of species, but the outcome of these interactions is often context-dependent. In small freshwater habitats, predacious copepods are potential biological control agents for mosquito larvae. Through laboratory experiments, we tested if the presence of a non-mosquito prey (neonate Daphnia pulex) influenced prey selection of the predaceous copepod (Acanthocyclops vernalis) on 1st instar Aedes mosquitoes (Aedes aegypti and Aedes albopictus). Copepods were starved for 12 h prior to being exposed to the two prey types (larval mosquitoes and Daphnia) at three densities: 25 mosquitoes:75 Daphnia, 50 mosquitoes:50 Daphnia, 75 mosquitoes:25 Daphnia. Single prey choice trials for each species as well as no-predator trials were also established for controls. Copepods were effective predators, with a single copepod consuming up to 37 1st instar mosquito larvae during the 24-h trials. The number of mosquitoes consumed increased with their relative density, but the proportion of mosquitoes consumed was highest when Aedes made up only 25% of the population. Results from our study show that in a simple predator/two-prey system, two species of larval mosquitoes (Ae. aegypti and Ae. albopictus) are preferentially consumed over an alternative zooplankton by the copepod predator Acanthocyclops vernalis.


Asunto(s)
Aedes , Copépodos , Animales , Agua Dulce , Larva , Conducta Predatoria
10.
Sci Rep ; 10(1): 19791, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188214

RESUMEN

The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.


Asunto(s)
Proteómica/métodos , Animales , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/metabolismo , Masculino , RNA-Seq/métodos
12.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
13.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
14.
J Res Adolesc ; 30(2): 361-371, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31469493

RESUMEN

We used a social developmental perspective to identify how prominent social contexts influence substance use during adolescence. Longitudinal data were collected annually from 167 parent-adolescent dyads over four years. We investigated whether parent substance use was related to adolescent substance use directly and indirectly via peer substance use and whether these associations were moderated by religious social support. Structural equation modeling (SEM) analysis indicated significant moderated mediation: Greater parent substance use predicted increases in adolescent substance use indirectly via increased peer substance use when adolescent religious social support was low or average, but not high. These results suggest religious social support may protect adolescents against prominent social risks for intergenerational substance use.


Asunto(s)
Religión , Apoyo Social , Trastornos Relacionados con Sustancias/prevención & control , Adolescente , Adulto , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Padres/psicología , Influencia de los Compañeros , Factores Protectores , Factores de Riesgo
15.
Insects ; 10(11)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661928

RESUMEN

Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.

16.
Eye (Lond) ; 33(11): 1748-1755, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31165770

RESUMEN

BACKGROUND/OBJECTIVES: To evaluate outcomes from all British military patients who underwent eye removal during the Iraq and Afghanistan wars. SUBJECTS/METHODS: Retrospective case note review of all patients (n = 19) who had undergone either evisceration or enucleation, on a database of all military patients repatriated to the Royal Centre for Defence Medicine, Birmingham. RESULTS: Twenty eye removals were performed on 19 patients, of which 14 (70%) were eviscerations and 6 (30%) were enucleations. Orbital wall fractures were seen in 12 (61%) patients, with orbital floor fractures being the most common. The eye removal was a primary procedure in five of fourteen eviscerations, and five of six enucleations. Complications were seen after four (28.6%) eviscerations patients and two (33.3%) enucleations. Postoperative pain was problematic after three (21.4%) eviscerations but no enucleations. Orbital implants were placed during three of the five primary enucleations, with good outcomes in two. One patient however required implant retrieval and wound washout due to a high risk of infection and communication with the intra-cranial space. CONCLUSIONS: Evisceration and enucleation are both viable options in the management of severe ocular trauma in military patients. Evisceration and enucleation have similar complication rates and outcomes, and both have low rates of sympathetic ophthalmia. Primary orbital implants can be at high risk in cases with orbital roof fracture, but can provide good outcomes in select patients.


Asunto(s)
Enucleación del Ojo/estadística & datos numéricos , Evisceración del Ojo/estadística & datos numéricos , Lesiones Oculares/cirugía , Personal Militar/estadística & datos numéricos , Adulto , Campaña Afgana 2001- , Bases de Datos Factuales , Lesiones Oculares/epidemiología , Humanos , Guerra de Irak 2003-2011 , Masculino , Medicina Militar , Implantes Orbitales , Implantación de Prótesis , Estudios Retrospectivos , Resultado del Tratamiento , Reino Unido/epidemiología , Adulto Joven
17.
Genome Biol ; 20(1): 64, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30935422

RESUMEN

BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.


Asunto(s)
Evolución Molecular , Genoma de los Insectos , Hemípteros/genética , Secuencia de Aminoácidos , Animales , Dedos de Zinc CYS2-HIS2 , Conducta Alimentaria , Dosificación de Gen , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Genes Homeobox , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Pigmentación/genética , Olfato , Factores de Transcripción/genética
18.
Child Dev ; 90(4): 1389-1401, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30295319

RESUMEN

The stressors associated with poverty increase the risks for externalizing psychopathology; however, specific patterns of neurobiology and higher self-regulation may buffer against these effects. This study leveraged a randomized control trial, aimed at increasing self-regulation at ~11 years of age. As adults, these same individuals completed functional MRI scanning (Mage  = 24.88 years; intervention n = 44; control n = 49). Functional connectivity between the hippocampus and ventromedial prefrontal cortex was examined in relation to the intervention, gains in self-regulation, and present-day externalizing symptoms. Increased connectivity between these brain areas was noted in the intervention group compared to controls. Furthermore, individual gains in self-regulation, instilled by the intervention, statistically explained this brain difference. These results begin to connect neurobiological and psychosocial markers of risk and resiliency.


Asunto(s)
Síntomas Conductuales/fisiopatología , Conducta Infantil , Conectoma , Terapia Familiar , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Autocontrol , Adulto , Síntomas Conductuales/diagnóstico por imagen , Niño , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven
19.
Sci Rep ; 8(1): 6804, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717151

RESUMEN

Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Culex/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Modelos Estadísticos , Agua/farmacología , Aedes/fisiología , Animales , Anopheles/fisiología , Metabolismo de los Hidratos de Carbono/genética , Culex/fisiología , Deshidratación/metabolismo , Conducta Alimentaria/fisiología , Femenino , Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metaboloma , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Trehalasa/antagonistas & inhibidores , Trehalasa/genética , Trehalasa/metabolismo , Trehalosa/metabolismo , Agua/metabolismo
20.
Biol Psychiatry ; 84(5): 365-371, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29731104

RESUMEN

BACKGROUND: Supportive parenting during childhood has been associated with many positive developmental outcomes for offspring in adulthood, including fewer health-risk behaviors. Little is known about the neural mechanisms underlying these associations. METHODS: The present study followed rural African Americans (n = 91, 52% female) from late childhood (11-13 years of age) to emerging adulthood (25 years of age). Parent-child communication was assessed at 11, 12, and 13 years of age. Functional magnetic resonance imaging was used at 25 years of age to measure resting-state functional connectivity of the anterior salience network (ASN). Harmful alcohol use and emotional eating were also assessed at 25 years of age. Structural equation modeling was used to test pathways from parent-child communication at 11 to 13 years of age to harmful alcohol use and emotional eating at 25 years of age via resting-state functional connectivity of the ASN. RESULTS: Greater parent-child communication between 11 and 13 years of age forecast greater resting-state functional connectivity of the ASN at 25 years of age which, in turn, was associated with lower harmful alcohol use and emotional eating at 25 years of age. Significant indirect effects through the ASN were present for both outcomes. CONCLUSIONS: These findings indicate the importance of parenting in late childhood for adaptive behaviors and suggest a pathway via higher ASN coherence. This network was implicated in both harmful alcohol use and emotional eating, corroborating evidence of overlap in brain regions for dysregulated substance use and eating behaviors and revealing divergent pathways. These findings support the value of prevention and intervention efforts targeting parenting skills in childhood toward fostering long-term, adaptive neurocognitive development.


Asunto(s)
Encéfalo/fisiología , Conductas de Riesgo para la Salud , Responsabilidad Parental , Adolescente , Adulto , Negro o Afroamericano , Alcoholismo/fisiopatología , Mapeo Encefálico , Niño , Ingestión de Alimentos , Emociones/fisiología , Femenino , Humanos , Análisis de Clases Latentes , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Relaciones Padres-Hijo , Población Rural , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...