Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 85(6): 3064-70, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23373771

RESUMEN

Low background signals are an indispensable prerequisite for accurate quantification in bioanalytics. This poses a special challenge when using derivatized samples, where excess reagent concentrations are increasing the background signal. Precleaning steps often are time-consuming and usually lead to analyte losses. In this study, a set of labeled model peptides and a protein digest was analyzed using inductively coupled plasma mass spectrometry (ICPMS), coupled to nano ion pairing reversed-phase high-performance liquid chromatography (nano-IP-RP-HPLC). In addition, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) was used for peptide identification. Peptides were labeled with lanthanide metals using bifunctional DOTA-based (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) reagents. The resulting metal excess was removed online during nano-HPLC, by trapping the labeled peptides on a C18-precolumn and washing them prior to their elution to the analytical column. Different ion pairing reagents like TFA (trifluoroacetic acid) and HFBA (heptafluorobutyric acid) were used in the study to enhance interactions of the different peptide species with the C18 material of the precolumn. HFBA even allowed the detection of a highly hydrophilic peptide that was not retained using TFA. It was shown that for the mixture of labeled model peptides, even a short 3 min washing step already enhanced the removal of the excess reagents significantly, whereas peptide losses were observable starting with a 10 min washing time. A 6 min washing time was determined to be the best parameter for lowering the lanthanide metal background while maintaining maximum peptide recovery. Alternative precleaning setups using EDTA to enhance the removal of free metal or an offline approach using solid phase extraction did not show promising results. The application of the optimized method to labeled peptides in a lysozyme digest showed results comparable to those obtained with model peptides.


Asunto(s)
Elementos de la Serie de los Lantanoides/análisis , Nanotecnología/métodos , Fragmentos de Péptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrofotometría Atómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Ácido Trifluoroacético/química
2.
RNA ; 15(12): 2375-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19861428

RESUMEN

MicroRNAs (miRNAs) are a species of small RNAs approximately 21-23-nucleotides long that have been shown to play an important role in many different cellular, developmental, and physiological processes. Accordingly, numerous PCR-, sequencing-, or hybridization-based methods have been established to identify and quantify miRNAs. Their short length results in a high dynamic range of melting temperatures and therefore impedes a proper selection of detection probes or optimized PCR primers. While miRNA microarrays allow for massive parallel and accurate relative measurement of all known miRNAs, they have so far been less useful as an assay for absolute quantification. Here, we present a microarray-based approach for global and absolute quantification of miRNAs. The method relies on the parallel hybridization of the sample of interest labeled with Cy5 and a universal reference of 954 synthetic miRNAs in equimolar concentrations that are labeled with Cy3 on a microarray slide containing probes for all human, mouse, rat, and viral miRNAs (miRBase 12.0). Each single miRNA is quantified with respect to the universal reference canceling biases related to sequence, labeling, or hybridization. We demonstrate the accuracy of the method by various spike-in experiments. Furthermore, we quantified miRNA copy numbers in liver samples and CD34(+)/CD133(-) hematopoietic progenitor cells.


Asunto(s)
MicroARNs/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Viral/análisis , Animales , Secuencia de Bases , Dosificación de Gen , Células Madre Hematopoyéticas/química , Humanos , Hígado/química , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...